IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v72y2014icp322-330.html
   My bibliography  Save this article

Significance of loss correlations in performance prediction of small scale, highly loaded turbine stages working in Organic Rankine Cycles

Author

Listed:
  • Klonowicz, Piotr
  • Heberle, Florian
  • Preißinger, Markus
  • Brüggemann, Dieter

Abstract

The comparison is made between various turbine loss models from the point of view of small, highly loaded impulse turbines operating in ORC cycles. The focus is laid on the influence of the passage and partial admission loss models and their combinations. The paper discusses the limitations concerning the small turbine designs for ORC and takes them into account in the analysis. A case study is provided for an ORC operating with cyclopentane. The cycle output power is in the range of a few to a few hundred kW. The last part of the results includes more generalized maps of efficiency plotted in the expansion ratio–size parameter domain. The results yield qualitative similarities between the efficiency values obtained by different model combinations. For low specific speeds the differences exceed 15% and for high specific speeds they are within about 5%.

Suggested Citation

  • Klonowicz, Piotr & Heberle, Florian & Preißinger, Markus & Brüggemann, Dieter, 2014. "Significance of loss correlations in performance prediction of small scale, highly loaded turbine stages working in Organic Rankine Cycles," Energy, Elsevier, vol. 72(C), pages 322-330.
  • Handle: RePEc:eee:energy:v:72:y:2014:i:c:p:322-330
    DOI: 10.1016/j.energy.2014.05.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214006069
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.05.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chacartegui, R. & Sánchez, D. & Muñoz, J.M. & Sánchez, T., 2009. "Alternative ORC bottoming cycles FOR combined cycle power plants," Applied Energy, Elsevier, vol. 86(10), pages 2162-2170, October.
    2. Kang, Seok Hun, 2012. "Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid," Energy, Elsevier, vol. 41(1), pages 514-524.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Witanowski, Łukasz & Klonowicz, Piotr & Lampart, Piotr & Klimaszewski, Piotr & Suchocki, Tomasz & Jędrzejewski, Łukasz & Zaniewski, Dawid & Ziółkowski, Paweł, 2023. "Impact of rotor geometry optimization on the off-design ORC turbine performance," Energy, Elsevier, vol. 265(C).
    2. Witanowski, Ł. & Klonowicz, P. & Lampart, P. & Suchocki, T. & Jędrzejewski, Ł. & Zaniewski, D. & Klimaszewski, P., 2020. "Optimization of an axial turbine for a small scale ORC waste heat recovery system," Energy, Elsevier, vol. 205(C).
    3. Witanowski, Łukasz & Ziółkowski, Paweł & Klonowicz, Piotr & Lampart, Piotr, 2023. "A hybrid approach to optimization of radial inflow turbine with principal component analysis," Energy, Elsevier, vol. 272(C).
    4. Peng, Ningjian & Wang, Enhua & Wang, Wenli, 2023. "Design and analysis of a 1.5 kW single-stage partial-admission impulse turbine for low-grade energy utilization," Energy, Elsevier, vol. 268(C).
    5. Zhu, Sipeng & Deng, Kangyao & Liu, Sheng, 2015. "Modeling and extrapolating mass flow characteristics of a radial turbocharger turbine," Energy, Elsevier, vol. 87(C), pages 628-637.
    6. Weiß, Andreas P. & Novotný, Václav & Popp, Tobias & Streit, Philipp & Špale, Jan & Zinn, Gerd & Kolovratník, Michal, 2020. "Customized ORC micro turbo-expanders - From 1D design to modular construction kit and prospects of additive manufacturing," Energy, Elsevier, vol. 209(C).
    7. Kaczmarczyk, Tomasz Z. & Żywica, Grzegorz & Ihnatowicz, Eugeniusz, 2017. "The impact of changes in the geometry of a radial microturbine stage on the efficiency of the micro CHP plant based on ORC," Energy, Elsevier, vol. 137(C), pages 530-543.
    8. Markus Preißinger & Dieter Brüggemann, 2017. "Thermoeconomic Evaluation of Modular Organic Rankine Cycles for Waste Heat Recovery over a Broad Range of Heat Source Temperatures and Capacities," Energies, MDPI, vol. 10(3), pages 1-23, February.
    9. Florian Heberle & Dieter Brüggemann, 2016. "Thermo-Economic Analysis of Zeotropic Mixtures and Pure Working Fluids in Organic Rankine Cycles for Waste Heat Recovery," Energies, MDPI, vol. 9(4), pages 1-16, March.
    10. Józef Rak & Przemysław Błasiak & Piotr Kolasiński, 2018. "Influence of the Applied Working Fluid and the Arrangement of the Steering Edges on Multi-Vane Expander Performance in Micro ORC System," Energies, MDPI, vol. 11(4), pages 1-16, April.
    11. Kumar, Manoj & Behera, Suraj K. & Kumar, Amitesh & Sahoo, Ranjit K., 2019. "Numerical and experimental investigation to visualize the fluid flow and thermal characteristics of a cryogenic turboexpander," Energy, Elsevier, vol. 189(C).
    12. Yatsuzuka, Shinichi & Niiyama, Yasunori & Fukuda, Kentaro & Muramatsu, Kenshiro & Shikazono, Naoki, 2015. "Experimental and numerical evaluation of liquid-piston steam engine," Energy, Elsevier, vol. 87(C), pages 1-9.
    13. Yang, Yi & Huo, Yaowu & Xia, Wenkai & Wang, Xurong & Zhao, Pan & Dai, Yiping, 2017. "Construction and preliminary test of a geothermal ORC system using geothermal resource from abandoned oil wells in the Huabei oilfield of China," Energy, Elsevier, vol. 140(P1), pages 633-645.
    14. Meroni, Andrea & Andreasen, Jesper Graa & Persico, Giacomo & Haglind, Fredrik, 2018. "Optimization of organic Rankine cycle power systems considering multistage axial turbine design," Applied Energy, Elsevier, vol. 209(C), pages 339-354.
    15. Witanowski, Łukasz & Klonowicz, Piotr & Lampart, Piotr & Ziółkowski, Paweł, 2023. "Multi-objective optimization of the ORC axial turbine for a waste heat recovery system working in two modes: cogeneration and condensation," Energy, Elsevier, vol. 264(C).
    16. Andrea Meroni & Angelo La Seta & Jesper Graa Andreasen & Leonardo Pierobon & Giacomo Persico & Fredrik Haglind, 2016. "Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part A: Turbine Model," Energies, MDPI, vol. 9(5), pages 1-15, April.
    17. Enhua Wang & Ningjian Peng, 2023. "A Review on the Preliminary Design of Axial and Radial Turbines for Small-Scale Organic Rankine Cycle," Energies, MDPI, vol. 16(8), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Peng & Shu, Gequn & Tian, Hua & Wang, Xuan & Yu, Zhigang, 2018. "Alkanes based two-stage expansion with interheating Organic Rankine cycle for multi-waste heat recovery of truck diesel engine," Energy, Elsevier, vol. 147(C), pages 337-350.
    2. Lee, Ung & Kim, Kyeongsu & Han, Chonghun, 2014. "Design and optimization of multi-component organic rankine cycle using liquefied natural gas cryogenic exergy," Energy, Elsevier, vol. 77(C), pages 520-532.
    3. Song, Jian & Wang, Yaxiong & Wang, Kai & Wang, Jiangfeng & Markides, Christos N., 2021. "Combined supercritical CO2 (SCO2) cycle and organic Rankine cycle (ORC) system for hybrid solar and geothermal power generation: Thermoeconomic assessment of various configurations," Renewable Energy, Elsevier, vol. 174(C), pages 1020-1035.
    4. Carcasci, Carlo & Ferraro, Riccardo & Miliotti, Edoardo, 2014. "Thermodynamic analysis of an organic Rankine cycle for waste heat recovery from gas turbines," Energy, Elsevier, vol. 65(C), pages 91-100.
    5. Uusitalo, Antti & Honkatukia, Juha & Turunen-Saaresti, Teemu, 2017. "Evaluation of a small-scale waste heat recovery organic Rankine cycle," Applied Energy, Elsevier, vol. 192(C), pages 146-158.
    6. Kamyar Darvish & Mehdi A. Ehyaei & Farideh Atabi & Marc A. Rosen, 2015. "Selection of Optimum Working Fluid for Organic Rankine Cycles by Exergy and Exergy-Economic Analyses," Sustainability, MDPI, vol. 7(11), pages 1-22, November.
    7. Li, Tailu & Zhu, Jialing & Hu, Kaiyong & Kang, Zhenhua & Zhang, Wei, 2014. "Implementation of PDORC (parallel double-evaporator organic Rankine cycle) to enhance power output in oilfield," Energy, Elsevier, vol. 68(C), pages 680-687.
    8. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    9. Lai, Ngoc Anh & Wendland, Martin & Fischer, Johann, 2011. "Working fluids for high-temperature organic Rankine cycles," Energy, Elsevier, vol. 36(1), pages 199-211.
    10. Subiantoro, Alison & Ooi, Kim Tiow, 2014. "Comparison and performance analysis of the novel revolving vane expander design variants in low and medium pressure applications," Energy, Elsevier, vol. 78(C), pages 747-757.
    11. Khaljani, M. & Khoshbakhti Saray, R. & Bahlouli, K., 2015. "Thermodynamic and thermoeconomic optimization of an integrated gas turbine and organic Rankine cycle," Energy, Elsevier, vol. 93(P2), pages 2136-2145.
    12. Yamada, Noboru & Tominaga, Yoshihito & Yoshida, Takanori, 2014. "Demonstration of 10-Wp micro organic Rankine cycle generator for low-grade heat recovery," Energy, Elsevier, vol. 78(C), pages 806-813.
    13. Kai Yang & Hongguang Zhang & Songsong Song & Jian Zhang & Yuting Wu & Yeqiang Zhang & Hongjin Wang & Ying Chang & Chen Bei, 2014. "Performance Analysis of the Vehicle Diesel Engine-ORC Combined System Based on a Screw Expander," Energies, MDPI, vol. 7(5), pages 1-20, May.
    14. Jung-Bo Sim & Se-Jin Yook & Young Won Kim, 2022. "Performance Analysis of Organic Rankine Cycle with the Turbine Embedded in a Generator (TEG)," Energies, MDPI, vol. 15(1), pages 1-18, January.
    15. Wang, Wei & Qiao, Han & Lei, Biao & Wu, Yu-ting & Ma, Chong-fang, 2021. "Experimental study on the influence of inlet and exhaust pressure loss on the performance of single screw expanders," Energy, Elsevier, vol. 232(C).
    16. Li, Guoqiang & Lei, Biao & Wu, Yuting & Zhi, Ruiping & Zhao, Yingkun & Guo, Zhiyu & Liu, Guangyu & Ma, Chongfang, 2018. "Influence of inlet pressure and rotational speed on the performance of high pressure single screw expander prototype," Energy, Elsevier, vol. 147(C), pages 279-285.
    17. Dong, Hye-Won & Jeong, Jae-Weon, 2020. "Energy benefits of organic Rankine cycle in a liquid desiccant and evaporative cooling-assisted air conditioning system," Renewable Energy, Elsevier, vol. 147(P1), pages 2358-2373.
    18. Lisheng Pan & Huaixin Wang, 2019. "Experimental Investigation on Performance of an Organic Rankine Cycle System Integrated with a Radial Flow Turbine," Energies, MDPI, vol. 12(4), pages 1-20, February.
    19. Jung-Bo Sim & Se-Jin Yook & Young Won Kim, 2023. "Development of 180 kW Organic Rankine Cycle (ORC) with a High-Efficiency Two-Stage Axial Turbine," Energies, MDPI, vol. 16(20), pages 1-20, October.
    20. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:72:y:2014:i:c:p:322-330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.