IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v232y2021ics0360544221011609.html
   My bibliography  Save this article

Experimental study on the influence of inlet and exhaust pressure loss on the performance of single screw expanders

Author

Listed:
  • Wang, Wei
  • Qiao, Han
  • Lei, Biao
  • Wu, Yu-ting
  • Ma, Chong-fang

Abstract

At present, the most prominent technical problems of small and medium capacity expanders are low internal efficiency and small expansion ratio. In order to promote the practical application of small and medium capacity Organic Rankine Cycle (ORC) system, improving the thermodynamic performance of the expander was a remarkable issue, and the systematic research on the irreversibility of expander's working process is the fundamental work to achieve this goal. Summarizing the related research on various small capacity volumetric expanders, the research on flow problem is lacked. For an atypical volumetric expander, the flow mechanism of single screw expanders (SSEs) is more complex. In this paper, we discussed the effect of the pressure loss in the inlet and exhaust passages on the performance of SSEs. We selected two SSE prototypes developed by our laboratory to carry out the experiment under variable working conditions. The internal volume ratios are 2.95 and 3.98 respectively. The pressure differences of inlet and exhaust passages were measured. In order to evaluate the effect of the flow losses on the performance, we defined two indexes: pressure loss rate (PLR) and pressure energy loss influence rate of shaft efficiency (PELRe). From the results, the pressure losses of inlet and exhaust passages for each SSE increase gradually, PLRin increases slightly and PLRout increases gradually. At the maximum point of shaft efficiency, the losses of the SSE with 2.95 are 28.06 kPa and 46.09 kPa, and the values of the SSE with 3.98 are 37.58 kPa and 33.79 kPa, respectively. It shows that the pressure losses are relatively high. The maximum values of internal and external expansion ratio for the SSE with 2.95 are 4.8 and 6 respectively, and the values of the SSE with 3.98 are 5.7 and 7 respectively. For ideal volume expansion, the internal expansion ratio of two prototypes should be 4.55 and 6.9, respectively. Summarizing the above results, how to enhance the pressure drop effect of leakage and reduce the flow resistance loss of inlet and exhaust passages simultaneously is an important technical premise to improve the expansion ratio by structural optimization. Meanwhile, PELRe of two prototypes are 16.01% and 13.59% respectively at the point. It shows that the flow losses of inlet and exhaust passages could significantly influence the performance of SSEs.

Suggested Citation

  • Wang, Wei & Qiao, Han & Lei, Biao & Wu, Yu-ting & Ma, Chong-fang, 2021. "Experimental study on the influence of inlet and exhaust pressure loss on the performance of single screw expanders," Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221011609
    DOI: 10.1016/j.energy.2021.120912
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221011609
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120912?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Guangdai & Shu, Gequn & Tian, Hua & Shi, Lingfeng & Zhuge, Weilin & Zhang, Jing & Atik, Mohammad Atikur Rahman, 2020. "Development and experimental study of a supercritical CO2 axial turbine applied for engine waste heat recovery," Applied Energy, Elsevier, vol. 257(C).
    2. Ziviani, D. & Gusev, S. & Lecompte, S. & Groll, E.A. & Braun, J.E. & Horton, W.T. & van den Broek, M. & De Paepe, M., 2016. "Characterizing the performance of a single-screw expander in a small-scale organic Rankine cycle for waste heat recovery," Applied Energy, Elsevier, vol. 181(C), pages 155-170.
    3. Wang, Wei & Wu, Yu-ting & Ma, Chong-fang & Xia, Guo-dong & Wang, Jing-fu, 2013. "Experimental study on the performance of single screw expanders by gap adjustment," Energy, Elsevier, vol. 62(C), pages 379-384.
    4. Zheng, N. & Zhao, L. & Wang, X.D. & Tan, Y.T., 2013. "Experimental verification of a rolling-piston expander that applied for low-temperature Organic Rankine Cycle," Applied Energy, Elsevier, vol. 112(C), pages 1265-1274.
    5. Zhang, Ye-Qiang & Wu, Yu-Ting & Xia, Guo-Dong & Ma, Chong-Fang & Ji, Wei-Ning & Liu, Shan-Wei & Yang, Kai & Yang, Fu-Bin, 2014. "Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine," Energy, Elsevier, vol. 77(C), pages 499-508.
    6. Zhou, Naijun & Wang, Xiaoyuan & Chen, Zhuo & Wang, Zhiqi, 2013. "Experimental study on Organic Rankine Cycle for waste heat recovery from low-temperature flue gas," Energy, Elsevier, vol. 55(C), pages 216-225.
    7. Cho, Soo-Yong & Cho, Chong-Hyun & Choi, Sang-Kyu, 2015. "Experiment and cycle analysis on a partially admitted axial-type turbine used in the organic Rankine cycle," Energy, Elsevier, vol. 90(P1), pages 643-651.
    8. Kang, Seok Hun, 2012. "Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid," Energy, Elsevier, vol. 41(1), pages 514-524.
    9. Shen, Lili & Wang, Wei & Wu, Yuting & Lei, Biao & Zhi, Ruiping & Lu, Yuanwei & Wang, Jingfu & Ma, Chongfang, 2018. "A study of clearance height on the performance of single-screw expanders in small-scale organic Rankine cycles," Energy, Elsevier, vol. 153(C), pages 45-55.
    10. Quoilin, Sylvain & Lemort, Vincent & Lebrun, Jean, 2010. "Experimental study and modeling of an Organic Rankine Cycle using scroll expander," Applied Energy, Elsevier, vol. 87(4), pages 1260-1268, April.
    11. Wang, Wei & Shen, Li-li & Chen, Ru-meng & Wu, Yu-ting & Ma, Chong-fang, 2020. "Numerical study of heat transfer influence on the performance of a single screw expander for Organic Rankine Cycle," Energy, Elsevier, vol. 193(C).
    12. Lei, Biao & Wang, Wei & Wu, Yu-Ting & Ma, Chong-Fang & Wang, Jing-Fu & Zhang, Lei & Li, Chuang & Zhao, Ying-Kun & Zhi, Rui-Ping, 2016. "Development and experimental study on a single screw expander integrated into an Organic Rankine Cycle," Energy, Elsevier, vol. 116(P1), pages 43-52.
    13. Ziviani, D. & Gusev, S. & Lecompte, S. & Groll, E.A. & Braun, J.E. & Horton, W.T. & van den Broek, M. & De Paepe, M., 2017. "Optimizing the performance of small-scale organic Rankine cycle that utilizes a single-screw expander," Applied Energy, Elsevier, vol. 189(C), pages 416-432.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Wei & Huo, Jia-hui & Tao, Yue-ting & Lei, Biao & Wu, Yu-ting & Ma, Chong-fang, 2023. "Semi-empirical modelling and analysis of single screw expanders considering inlet and exhaust pressure losses," Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wei & Huo, Jia-hui & Tao, Yue-ting & Lei, Biao & Wu, Yu-ting & Ma, Chong-fang, 2023. "Semi-empirical modelling and analysis of single screw expanders considering inlet and exhaust pressure losses," Energy, Elsevier, vol. 266(C).
    2. Li, Guoqiang & Lei, Biao & Wu, Yuting & Zhi, Ruiping & Zhao, Yingkun & Guo, Zhiyu & Liu, Guangyu & Ma, Chongfang, 2018. "Influence of inlet pressure and rotational speed on the performance of high pressure single screw expander prototype," Energy, Elsevier, vol. 147(C), pages 279-285.
    3. Feng, Yong-qiang & Hung, Tzu-Chen & Su, Ting-Ying & Wang, Shuang & Wang, Qian & Yang, Shih-Cheng & Lin, Jaw-Ren & Lin, Chih-Hung, 2017. "Experimental investigation of a R245fa-based organic Rankine cycle adapting two operation strategies: Stand alone and grid connect," Energy, Elsevier, vol. 141(C), pages 1239-1253.
    4. Casari, Nicola & Fadiga, Ettore & Pinelli, Michele & Randi, Saverio & Suman, Alessio & Ziviani, Davide, 2020. "Investigation of flow characteristics in a single screw expander: A numerical approach," Energy, Elsevier, vol. 213(C).
    5. Landelle, Arnaud & Tauveron, Nicolas & Haberschill, Philippe & Revellin, Rémi & Colasson, Stéphane, 2017. "Organic Rankine cycle design and performance comparison based on experimental database," Applied Energy, Elsevier, vol. 204(C), pages 1172-1187.
    6. Yamada, Noboru & Tominaga, Yoshihito & Yoshida, Takanori, 2014. "Demonstration of 10-Wp micro organic Rankine cycle generator for low-grade heat recovery," Energy, Elsevier, vol. 78(C), pages 806-813.
    7. Guo, Zhiyu & Zhang, Cancan & Wu, Yuting & Lei, Biao & Yan, Dong & Zhi, Ruiping & Shen, Lili, 2020. "Numerical optimization of intake and exhaust structure and experimental verification on single-screw expander for small-scale ORC applications," Energy, Elsevier, vol. 199(C).
    8. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Wang, Yan & Lei, Biao & Wu, Yuting, 2022. "Performance limits of the single screw expander in organic Rankine cycle with ensemble learning and hyperdimensional evolutionary many-objective optimization algorithm intervention," Energy, Elsevier, vol. 245(C).
    9. Cao, Shuang & Xu, Jinliang & Miao, Zheng & Liu, Xiulong & Zhang, Ming & Xie, Xuewang & Li, Zhi & Zhao, Xiaoli & Tang, Guihua, 2019. "Steady and transient operation of an organic Rankine cycle power system," Renewable Energy, Elsevier, vol. 133(C), pages 284-294.
    10. Shen, Lili & Wang, Wei & Wu, Yuting & Lei, Biao & Zhi, Ruiping & Lu, Yuanwei & Wang, Jingfu & Ma, Chongfang, 2018. "A study of clearance height on the performance of single-screw expanders in small-scale organic Rankine cycles," Energy, Elsevier, vol. 153(C), pages 45-55.
    11. Li, Jing & Gao, Guangtao & Li, Pengcheng & Pei, Gang & Huang, Hulin & Su, Yuehong & Ji, Jie, 2018. "Experimental study of organic Rankine cycle in the presence of non-condensable gases," Energy, Elsevier, vol. 142(C), pages 739-753.
    12. Lei, Biao & Wu, Yu-Ting & Wang, Wei & Wang, Jing-Fu & Ma, Chong-Fang, 2014. "A study on lubricant oil supply for positive-displacement expanders in small-scale organic Rankine cycles," Energy, Elsevier, vol. 78(C), pages 846-853.
    13. Zhang, Hong-Hu & Xi, Huan & He, Ya-Ling & Zhang, Yu-Wen & Ning, Bo, 2019. "Experimental study of the organic rankine cycle under different heat and cooling conditions," Energy, Elsevier, vol. 180(C), pages 678-688.
    14. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Lee, Dong-Hyun, 2016. "Volumetric expanders for low grade heat and waste heat recovery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1090-1109.
    15. Wang, Wei & Shen, Li-li & Chen, Ru-meng & Wu, Yu-ting & Ma, Chong-fang, 2020. "Numerical study of heat transfer influence on the performance of a single screw expander for Organic Rankine Cycle," Energy, Elsevier, vol. 193(C).
    16. Zhao, Ying-Kun & Lei, Biao & Wu, Yu-Ting & Zhi, Rui-Ping & Wang, Wei & Guo, Hang & Ma, Chong-Fang, 2018. "Experimental study on the net efficiency of an Organic Rankine Cycle with single screw expander in different seasons," Energy, Elsevier, vol. 165(PB), pages 769-775.
    17. Giuffrida, Antonio, 2017. "Improving the semi-empirical modelling of a single-screw expander for small organic Rankine cycles," Applied Energy, Elsevier, vol. 193(C), pages 356-368.
    18. Liu, Chao & Wang, Shukun & Zhang, Cheng & Li, Qibin & Xu, Xiaoxiao & Huo, Erguang, 2019. "Experimental study of micro-scale organic Rankine cycle system based on scroll expander," Energy, Elsevier, vol. 188(C).
    19. Xinxin Zhang & Yin Zhang & Min Cao & Jingfu Wang & Yuting Wu & Chongfang Ma, 2019. "Working Fluid Selection for Organic Rankine Cycle Using Single-Screw Expander," Energies, MDPI, vol. 12(16), pages 1-23, August.
    20. Xinxin Zhang & Yin Zhang & Zhenlei Li & Jingfu Wang & Yuting Wu & Chongfang Ma, 2020. "Zeotropic Mixture Selection for an Organic Rankine Cycle Using a Single Screw Expander," Energies, MDPI, vol. 13(5), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221011609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.