IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v67y2014icp328-340.html
   My bibliography  Save this article

The influence of the size of the CHP (combined heat and power) system integrated with a biomass fueled gas generator and piston engine on the thermodynamic and economic effectiveness of electricity and heat generation

Author

Listed:
  • Skorek-Osikowska, Anna
  • Bartela, Łukasz
  • Kotowicz, Janusz
  • Sobolewski, Aleksander
  • Iluk, Tomasz
  • Remiorz, Leszek

Abstract

This paper analyzes the possibility and the cost of using gas from biomass gasification in the production of electricity and generation of heat using a piston engine in which the power in the supplied biomass is no more than 50 MW. A mathematical model that allows for thermodynamic and economic analysis was designed. The input data regarding the gas generator and the process gas were collected in real experiments on the research installation. Electricity and heat production efficiencies and the electric and heat power of the system were primarily used as indicators of the thermodynamic effectiveness. For the economic analysis, discount methods were adopted that consider the legal and economic environment of such investments. Given the assumptions, the analysis shows that positive economic indicators can characterize the considered systems. The work also included sensitivity analysis of change of the selected characteristic quantities on the evaluation indices. The economic viability of such systems is strongly influenced by many factors, mainly price of fuel and green certificates. When the price of fuel is higher than 9.62 €/GJ or the price of certificates lower than 26.75 €/MWh the NPV (net present value) and NPVR (net present value ratio) indices do not reach positive values for any size of installation.

Suggested Citation

  • Skorek-Osikowska, Anna & Bartela, Łukasz & Kotowicz, Janusz & Sobolewski, Aleksander & Iluk, Tomasz & Remiorz, Leszek, 2014. "The influence of the size of the CHP (combined heat and power) system integrated with a biomass fueled gas generator and piston engine on the thermodynamic and economic effectiveness of electricity an," Energy, Elsevier, vol. 67(C), pages 328-340.
  • Handle: RePEc:eee:energy:v:67:y:2014:i:c:p:328-340
    DOI: 10.1016/j.energy.2014.01.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421400022X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.01.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kotowicz, Janusz & Bartela, Łukasz, 2011. "The influence of the legal and economical environment and the profile of activities on the optimal design features of a natural-gas-fired combined heat and power plant," Energy, Elsevier, vol. 36(1), pages 328-338.
    2. van der Heijden, Harro & Ptasinski, Krzysztof J., 2012. "Exergy analysis of thermochemical ethanol production via biomass gasification and catalytic synthesis," Energy, Elsevier, vol. 46(1), pages 200-210.
    3. Kotowicz, Janusz & Bartela, Łukasz, 2010. "The influence of economic parameters on the optimal values of the design variables of a combined cycle plant," Energy, Elsevier, vol. 35(2), pages 911-919.
    4. Skorek-Osikowska, Anna & Janusz-Szymańska, Katarzyna & Kotowicz, Janusz, 2012. "Modeling and analysis of selected carbon dioxide capture methods in IGCC systems," Energy, Elsevier, vol. 45(1), pages 92-100.
    5. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    6. Kotowicz, Janusz & Sobolewski, Aleksander & Iluk, Tomasz, 2013. "Energetic analysis of a system integrated with biomass gasification," Energy, Elsevier, vol. 52(C), pages 265-278.
    7. Rakopoulos, C.D. & Michos, C.N. & Giakoumis, E.G., 2008. "Availability analysis of a syngas fueled spark ignition engine using a multi-zone combustion model," Energy, Elsevier, vol. 33(9), pages 1378-1398.
    8. Martínez, Juan Daniel & Mahkamov, Khamid & Andrade, Rubenildo V. & Silva Lora, Electo E., 2012. "Syngas production in downdraft biomass gasifiers and its application using internal combustion engines," Renewable Energy, Elsevier, vol. 38(1), pages 1-9.
    9. Juraščík, Martin & Sues, Anna & Ptasinski, Krzysztof J., 2010. "Exergy analysis of synthetic natural gas production method from biomass," Energy, Elsevier, vol. 35(2), pages 880-888.
    10. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Role of renewable energy sources in environmental protection: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1513-1524, April.
    11. Miles, James A. & Ezzell, John R., 1980. "The Weighted Average Cost of Capital, Perfect Capital Markets, and Project Life: A Clarification," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 15(3), pages 719-730, September.
    12. Bartela, Łukasz & Skorek-Osikowska, Anna & Kotowicz, Janusz, 2014. "Economic analysis of a supercritical coal-fired CHP plant integrated with an absorption carbon capture installation," Energy, Elsevier, vol. 64(C), pages 513-523.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kotowicz, Janusz & Michalski, Sebastian, 2015. "Influence of four-end HTM (high temperature membrane) parameters on the thermodynamic and economic characteristics of a supercritical power plant," Energy, Elsevier, vol. 81(C), pages 662-673.
    2. Janusz-Szymańska, Katarzyna & Dryjańska, Aleksandra, 2015. "Possibilities for improving the thermodynamic and economic characteristics of an oxy-type power plant with a cryogenic air separation unit," Energy, Elsevier, vol. 85(C), pages 45-61.
    3. Bartela, Łukasz & Kotowicz, Janusz & Dubiel-Jurgaś, Klaudia, 2018. "Investment risk for biomass integrated gasification combined heat and power unit with an internal combustion engine and a Stirling engine," Energy, Elsevier, vol. 150(C), pages 601-616.
    4. Janusz Kotowicz & Sebastian Michalski & Mateusz Brzęczek, 2019. "The Characteristics of a Modern Oxy-Fuel Power Plant," Energies, MDPI, vol. 12(17), pages 1-34, September.
    5. Kotowicz, Janusz & Michalski, Sebastian, 2016. "Thermodynamic and economic analysis of a supercritical and an ultracritical oxy-type power plant without and with waste heat recovery," Applied Energy, Elsevier, vol. 179(C), pages 806-820.
    6. Aliyu, Abubakar Sadiq & Dada, Joseph O. & Adam, Ibrahim Khalil, 2015. "Current status and future prospects of renewable energy in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 336-346.
    7. Jie Ma & Amos Oppong & Kingsley Nketia Acheampong & Lucille Aba Abruquah, 2018. "Forecasting Renewable Energy Consumption under Zero Assumptions," Sustainability, MDPI, vol. 10(3), pages 1-17, February.
    8. Ghouchani, Mahya & Taji, Mohammad & Cheheltani, Atefeh Sadat & Chehr, Mohammad Seifi, 2021. "Developing a perspective on the use of renewable energy in Iran," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    9. Ding Tian & Taoli Gu & Sai Nitin Yellamilli & Chulsung Bae, 2020. "Phosphoric Acid-Doped Ion-Pair Coordinated PEMs with Broad Relative Humidity Tolerance," Energies, MDPI, vol. 13(8), pages 1-14, April.
    10. Mauro Villarini & Vera Marcantonio & Andrea Colantoni & Enrico Bocci, 2019. "Sensitivity Analysis of Different Parameters on the Performance of a CHP Internal Combustion Engine System Fed by a Biomass Waste Gasifier," Energies, MDPI, vol. 12(4), pages 1-21, February.
    11. Kotowicz, Janusz & Job, Marcin & Brzęczek, Mateusz, 2015. "The characteristics of ultramodern combined cycle power plants," Energy, Elsevier, vol. 92(P2), pages 197-211.
    12. Deetjen, Thomas A. & Rhodes, Joshua D. & Webber, Michael E., 2017. "The impacts of wind and solar on grid flexibility requirements in the Electric Reliability Council of Texas," Energy, Elsevier, vol. 123(C), pages 637-654.
    13. Karytsas, Spyridon & Theodoropoulou, Helen, 2014. "Public awareness and willingness to adopt ground source heat pumps for domestic heating and cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 49-57.
    14. Ishaq, H. & Dincer, I., 2021. "Comparative assessment of renewable energy-based hydrogen production methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Usmani, Sameer & Gonzalez Quiroga, Arturo & Vasquez Padilla, Ricardo & Palmer, Graeme & Lake, Maree, 2020. "Simulation model of the characteristics of syngas from hardwood biomass for thermally integrated gasification using unisim design tool," Energy, Elsevier, vol. 211(C).
    16. Elsner, Witold & Wysocki, Marian & Niegodajew, Paweł & Borecki, Roman, 2017. "Experimental and economic study of small-scale CHP installation equipped with downdraft gasifier and internal combustion engine," Applied Energy, Elsevier, vol. 202(C), pages 213-227.
    17. Berk, Istemi & Yetkiner, Hakan, 2014. "Energy prices and economic growth in the long run: Theory and evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 228-235.
    18. Kan, Xiang & Zhou, Dezhi & Yang, Wenming & Zhai, Xiaoqiang & Wang, Chi-Hwa, 2018. "An investigation on utilization of biogas and syngas produced from biomass waste in premixed spark ignition engine," Applied Energy, Elsevier, vol. 212(C), pages 210-222.
    19. Chen, Jialing & Li, Xian & Dai, Yanjun & Wang, Chi-Hwa, 2021. "Energetic, economic, and environmental assessment of a Stirling engine based gasification CCHP system," Applied Energy, Elsevier, vol. 281(C).
    20. Hong, Lixuan & Zhou, Nan & Fridley, David & Raczkowski, Chris, 2013. "Assessment of China's renewable energy contribution during the 12th Five Year Plan," Energy Policy, Elsevier, vol. 62(C), pages 1533-1543.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:67:y:2014:i:c:p:328-340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.