IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v55y2013icp361-368.html
   My bibliography  Save this article

Acoustic characteristics of a mean flow acoustic engine capable of wind energy harvesting: Effect of resonator tube length

Author

Listed:
  • Sun, Daming
  • Xu, Ya
  • Chen, Haijun
  • Shen, Qie
  • Zhang, Xuejun
  • Qiu, Limin

Abstract

A mean flow acoustic engine based on the aerodynamic effects converts wind energy and fluid energy in pipelines into acoustic energy which can be used to drive thermoacoustic refrigerators and transducers without any mechanical moving parts. A mean flow acoustic engine with the resonator tube length regulated steplessly was developed for experimental study. Experimental results reveal the effects of the resonator tube length and the mean flow velocity. When the single end closed resonator length is between 150 mm and 230 mm, the acoustic field is in the fundamental mode; more odd acoustic modes appear in turn with the increase of the resonator length. There exist stable oscillation regions in certain ranges of the mean flow velocity. The critical lengths occurring between the transition points of acoustic modes are determined experimentally. Furthermore, the strong acoustic oscillation in the first hydrodynamic mode and the first acoustic mode is more likely to occur at short resonator. With the mean pressure of 106.36 kPa, the mean flow velocity of 50.35 m/s, and the single end closed resonator length of 190 mm, the mean flow acoustic engine demonstrates a pressure amplitude of 15.67 kPa, showing a great potential in mean flow energy harvesting.

Suggested Citation

  • Sun, Daming & Xu, Ya & Chen, Haijun & Shen, Qie & Zhang, Xuejun & Qiu, Limin, 2013. "Acoustic characteristics of a mean flow acoustic engine capable of wind energy harvesting: Effect of resonator tube length," Energy, Elsevier, vol. 55(C), pages 361-368.
  • Handle: RePEc:eee:energy:v:55:y:2013:i:c:p:361-368
    DOI: 10.1016/j.energy.2013.03.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213002685
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.03.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Zhenhai & Zhao, Jing & Zhang, Wenyu & Wang, Jianzhou, 2011. "A corrected hybrid approach for wind speed prediction in Hexi Corridor of China," Energy, Elsevier, vol. 36(3), pages 1668-1679.
    2. Bisio, G & Rubatto, G, 1999. "Sondhauss and Rijke oscillations—thermodynamic analysis, possible applications and analogies," Energy, Elsevier, vol. 24(2), pages 117-131.
    3. Xu, Jianzhong & He, Dexin & Zhao, Xiaolu, 2010. "Status and prospects of Chinese wind energy," Energy, Elsevier, vol. 35(11), pages 4439-4444.
    4. Chun, Wongee & Oh, Seung Jin & Lee, Yoon Joon & Lim, Sang Hoon & Surathu, Rohit & Chen, Kuan, 2012. "Acoustic waves generated by a TA (ThermoAcoustic) laser pair," Energy, Elsevier, vol. 45(1), pages 541-545.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Yan S.W. & Sun, Daming & Zhang, Jie & Xu, Ya & Qi, Yun, 2017. "Study on a Pi-type mean flow acoustic engine capable of wind energy harvesting using a CFD model," Applied Energy, Elsevier, vol. 189(C), pages 602-612.
    2. Wang, Kai & Sun, Daming & Xu, Ya & Zou, Jiang & Zhang, Xiaobin & Qiu, Limin, 2014. "Operating characteristics of thermoacoustic compression based on alternating to direct gas flow conversion," Energy, Elsevier, vol. 75(C), pages 338-348.
    3. Zhou, Zhiyong & Qin, Weiyang & Zhu, Pei & Shang, Shijie, 2018. "Scavenging wind energy by a Y-shaped bi-stable energy harvester with curved wings," Energy, Elsevier, vol. 153(C), pages 400-412.
    4. Ya Xu & Jiangqi Yuan & Daming Sun & Dailiang Xie, 2022. "Piezoelectric Harvesting of Fluid Kinetic Energy Based on Flow-Induced Oscillation," Energies, MDPI, vol. 15(23), pages 1-11, December.
    5. Liuyi Jiang & Hong Zhang & Qingquan Duan & Xiaoben Liu, 2021. "Numerical Simulation of Acoustic Resonance Enhancement for Mean Flow Wind Energy Harvester as Well as Suppression for Pipeline," Energies, MDPI, vol. 14(6), pages 1-17, March.
    6. Zhou, Zhiyong & Qin, Weiyang & Zhu, Pei, 2017. "Harvesting acoustic energy by coherence resonance of a bi-stable piezoelectric harvester," Energy, Elsevier, vol. 126(C), pages 527-534.
    7. Qin, Weiyang & Deng, Wangzheng & Pan, Jianan & Zhou, Zhiyong & Du, Wenfeng & Zhu, Pei, 2019. "Harvesting wind energy with bi-stable snap-through excited by vortex-induced vibration and galloping," Energy, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Dan & Ji, Chenzhen & Li, Shihuai & Li, Junwei, 2014. "Thermodynamic measurement and analysis of dual-temperature thermoacoustic oscillations for energy harvesting application," Energy, Elsevier, vol. 65(C), pages 517-526.
    2. Wang, Kai & Sun, Daming & Xu, Ya & Zou, Jiang & Zhang, Xiaobin & Qiu, Limin, 2014. "Operating characteristics of thermoacoustic compression based on alternating to direct gas flow conversion," Energy, Elsevier, vol. 75(C), pages 338-348.
    3. Qunli Wu & Chenyang Peng, 2015. "Wind Power Grid Connected Capacity Prediction Using LSSVM Optimized by the Bat Algorithm," Energies, MDPI, vol. 8(12), pages 1-15, December.
    4. Li, Xinyan & Zhao, Dan & Yang, Xinglin, 2017. "Experimental and theoretical bifurcation study of a nonlinear standing-wave thermoacoustic system," Energy, Elsevier, vol. 135(C), pages 553-562.
    5. Zhang, Zhiguo & Zhao, Dan & Li, S.H. & Ji, C.Z. & Li, X.Y. & Li, J.W., 2015. "Transient energy growth of acoustic disturbances in triggering self-sustained thermoacoustic oscillations," Energy, Elsevier, vol. 82(C), pages 370-381.
    6. Zhao, Dan & Ji, Chenzhen & Teo, C. & Li, Shihuai, 2014. "Performance of small-scale bladeless electromagnetic energy harvesters driven by water or air," Energy, Elsevier, vol. 74(C), pages 99-108.
    7. Markides, Christos N. & Gupta, Ajay, 2013. "Experimental investigation of a thermally powered central heating circulator: Pumping characteristics," Applied Energy, Elsevier, vol. 110(C), pages 132-146.
    8. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    9. Wang, Jianzhou & Xiong, Shenghua, 2014. "A hybrid forecasting model based on outlier detection and fuzzy time series – A case study on Hainan wind farm of China," Energy, Elsevier, vol. 76(C), pages 526-541.
    10. Huang, Shih-Chieh & Lo, Shang-Lien & Lin, Yen-Ching, 2013. "Application of a fuzzy cognitive map based on a structural equation model for the identification of limitations to the development of wind power," Energy Policy, Elsevier, vol. 63(C), pages 851-861.
    11. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    12. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    13. Zhao, Jing & Guo, Zhen-Hai & Su, Zhong-Yue & Zhao, Zhi-Yuan & Xiao, Xia & Liu, Feng, 2016. "An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed," Applied Energy, Elsevier, vol. 162(C), pages 808-826.
    14. Li, Xinyan & Zhao, Dan & Yang, Xinglin & Wen, Huabing & Jin, Xiao & Li, Shen & Zhao, He & Xie, Changqing & Liu, Haili, 2016. "Transient growth of acoustical energy associated with mitigating thermoacoustic oscillations," Applied Energy, Elsevier, vol. 169(C), pages 481-490.
    15. Li, X. & Hubacek, K. & Siu, Y.L., 2012. "Wind power in China – Dream or reality?," Energy, Elsevier, vol. 37(1), pages 51-60.
    16. Chen, Xue-Jun & Zhao, Jing & Jia, Xiao-Zhong & Li, Zhong-Long, 2021. "Multi-step wind speed forecast based on sample clustering and an optimized hybrid system," Renewable Energy, Elsevier, vol. 165(P1), pages 595-611.
    17. Wang, Jianzhou & Qin, Shanshan & Zhou, Qingping & Jiang, Haiyan, 2015. "Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China," Renewable Energy, Elsevier, vol. 76(C), pages 91-101.
    18. Zhang, Wenyu & Wu, Jie & Wang, Jianzhou & Zhao, Weigang & Shen, Lin, 2012. "Performance analysis of four modified approaches for wind speed forecasting," Applied Energy, Elsevier, vol. 99(C), pages 324-333.
    19. Shih-Chieh Huang & Shang-Lien Lo & Yen-Ching Lin, 2013. "To Re-Explore the Causality between Barriers to Renewable Energy Development: A Case Study of Wind Energy," Energies, MDPI, vol. 6(9), pages 1-24, August.
    20. Lam, J.C.K. & Woo, C.K. & Kahrl, F. & Yu, W.K., 2013. "What moves wind energy development in China? Show me the money!," Applied Energy, Elsevier, vol. 105(C), pages 423-429.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:55:y:2013:i:c:p:361-368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.