IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v51y2013icp230-236.html
   My bibliography  Save this article

Hydrogen generator system using Ru catalyst for PEMFC (proton exchange membrane fuel cell) applications

Author

Listed:
  • Huang, Zhen-Ming
  • Su, Ay
  • Liu, Ying-Chieh

Abstract

High purity hydrogen produced by hydrolysis of sodium borohydride can be used directly in (proton exchange membrane) PEM fuel cells for portable devices and automotive applications. The advantages of high storage capacity, quickly start, controllable reaction and mild condition, hydrogen generation by catalytic hydrolysis of chemical hydride, such as sodium borohydride, has attracted much attention for development recently.

Suggested Citation

  • Huang, Zhen-Ming & Su, Ay & Liu, Ying-Chieh, 2013. "Hydrogen generator system using Ru catalyst for PEMFC (proton exchange membrane fuel cell) applications," Energy, Elsevier, vol. 51(C), pages 230-236.
  • Handle: RePEc:eee:energy:v:51:y:2013:i:c:p:230-236
    DOI: 10.1016/j.energy.2013.01.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421300039X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.01.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thepkaew, Jarupuk & Therdthianwong, Apichai & Therdthianwong, Supaporn, 2008. "Key parameters of active layers affecting proton exchange membrane (PEM) fuel cell performance," Energy, Elsevier, vol. 33(12), pages 1794-1800.
    2. Carton, J.G. & Lawlor, V. & Olabi, A.G. & Hochenauer, C. & Zauner, G., 2012. "Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels," Energy, Elsevier, vol. 39(1), pages 63-73.
    3. Esmaeilifar, A. & Rowshanzamir, S. & Eikani, M.H. & Ghazanfari, E., 2010. "Synthesis methods of low-Pt-loading electrocatalysts for proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 35(9), pages 3941-3957.
    4. San Martin, J.I. & Zamora, I. & San Martin, J.J. & Aperribay, V. & Torres, E. & Eguia, P., 2010. "Influence of the rated power in the performance of different proton exchange membrane (PEM) fuel cells," Energy, Elsevier, vol. 35(5), pages 1898-1907.
    5. Huang, Chia-Hung & Liu, Shyh-Jiun & Hwang, Weng-Sing, 2011. "Chelating agent assisted heat treatment of carbon supported cobalt oxide nanoparticle for use as cathode catalyst of polymer electrolyte membrane fuel cell (PEMFC)," Energy, Elsevier, vol. 36(7), pages 4410-4414.
    6. Carton, J.G. & Olabi, A.G., 2010. "Design of experiment study of the parameters that affect performance of three flow plate configurations of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 35(7), pages 2796-2806.
    7. Chen, Y. & Kim, H., 2010. "Preparation and application of sodium borohydride composites for portable hydrogen production," Energy, Elsevier, vol. 35(2), pages 960-963.
    8. Carton, J.G. & Olabi, A.G., 2010. "Wind/hydrogen hybrid systems: Opportunity for Ireland’s wind resource to provide consistent sustainable energy supply," Energy, Elsevier, vol. 35(12), pages 4536-4544.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Perng, Shiang-Wuu & Chien, Tsai-Chieh & Horng, Rong-Fang & Wu, Horng-Wen, 2019. "Performance enhancement of a plate methanol steam reformer by ribs installed in the reformer channel," Energy, Elsevier, vol. 167(C), pages 588-601.
    2. Chou, Chang-Chen & Hsieh, Ching-Hsuan & Chen, Bing-Hung, 2015. "Hydrogen generation from catalytic hydrolysis of sodium borohydride using bimetallic Ni–Co nanoparticles on reduced graphene oxide as catalysts," Energy, Elsevier, vol. 90(P2), pages 1973-1982.
    3. Loghmani, Mohammad Hassan & Shojaei, Abdollah Fallah & Khakzad, Morteza, 2017. "Hydrogen generation as a clean energy through hydrolysis of sodium borohydride over Cu-Fe-B nano powders: Effect of polymers and surfactants," Energy, Elsevier, vol. 126(C), pages 830-840.
    4. Chou, Chang-Chen & Liu, Cheng-Hong & Chen, Bing-Hung, 2014. "Effects of reduction temperature and pH value of polyol process on reduced graphene oxide supported Pt electrocatalysts for oxygen reduction reaction," Energy, Elsevier, vol. 70(C), pages 231-238.
    5. Chen, Yingwen & Xu, Yuan & Chen, Liuliu & Li, Peiwen & Zhu, Shemin & Shen, Shubao, 2015. "Microbial electrolysis cells with polyaniline/multi-walled carbon nanotube-modified biocathodes," Energy, Elsevier, vol. 88(C), pages 377-384.
    6. Chinnappan, Amutha & Jadhav, Arvind H. & Puguan, John Marc C. & Appiah-Ntiamoah, Richard & Kim, Hern, 2015. "Fabrication of ionic liquid/polymer nanoscale networks by electrospinning and chemical cross-linking and their application in hydrogen generation from the hydrolysis of NaBH4," Energy, Elsevier, vol. 79(C), pages 482-488.
    7. Loghmani, Mohammad Hassan & Shojaei, Abdollah Fallah, 2014. "Hydrogen production through hydrolysis of sodium borohydride: Oleic acid stabilized Co–La–Zr–B nanoparticle as a novel catalyst," Energy, Elsevier, vol. 68(C), pages 152-159.
    8. Li, Fang & Arthur, Ernest Evans & La, Dahye & Li, Qiming & Kim, Hern, 2014. "Immobilization of CoCl2 (cobalt chloride) on PAN (polyacrylonitrile) composite nanofiber mesh filled with carbon nanotubes for hydrogen production from hydrolysis of NaBH4 (sodium borohydride)," Energy, Elsevier, vol. 71(C), pages 32-39.
    9. Yao, Ling & Wang, Feng & Wang, Long & Wang, Guoqiang, 2019. "Transport enhancement study on small-scale methanol steam reforming reactor with waste heat recovery for hydrogen production," Energy, Elsevier, vol. 175(C), pages 986-997.
    10. Zhao, Jian & Ozden, Adnan & Shahgaldi, Samaneh & Alaefour, Ibrahim E. & Li, Xianguo & Hamdullahpur, Feridun, 2018. "Effect of Pt loading and catalyst type on the pore structure of porous electrodes in polymer electrolyte membrane (PEM) fuel cells," Energy, Elsevier, vol. 150(C), pages 69-76.
    11. Kim, Taegyu, 2014. "NaBH4 (sodium borohydride) hydrogen generator with a volume-exchange fuel tank for small unmanned aerial vehicles powered by a PEM (proton exchange membrane) fuel cell," Energy, Elsevier, vol. 69(C), pages 721-727.
    12. Oh, Taek Hyun & Gang, Byeong Gyu & Kim, Hyuntak & Kwon, Sejin, 2015. "Sodium borohydride hydrogen generator using Co–P/Ni foam catalysts for 200 W proton exchange membrane fuel cell system," Energy, Elsevier, vol. 90(P1), pages 1163-1170.
    13. Hedayati, Ali & Le Corre, Olivier & Lacarrière, Bruno & Llorca, Jordi, 2016. "Dynamic simulation of pure hydrogen production via ethanol steam reforming in a catalytic membrane reactor," Energy, Elsevier, vol. 117(P2), pages 316-324.
    14. Li, Dazi & Yu, Yadi & Jin, Qibing & Gao, Zhiqiang, 2014. "Maximum power efficiency operation and generalized predictive control of PEM (proton exchange membrane) fuel cell," Energy, Elsevier, vol. 68(C), pages 210-217.
    15. Zhang, Caizhi & Liu, Zhitao & Zhou, Weijiang & Chan, Siew Hwa & Wang, Youyi, 2015. "Dynamic performance of a high-temperature PEM fuel cell – An experimental study," Energy, Elsevier, vol. 90(P2), pages 1949-1955.
    16. Sahiner, Nurettin & Seven, Fahriye, 2014. "The use of superporous p(AAc (acrylic acid)) cryogels as support for Co and Ni nanoparticle preparation and as reactor in H2 production from sodium borohydride hydrolysis," Energy, Elsevier, vol. 71(C), pages 170-179.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahnavard, Aylin & Rowshanzamir, Soosan & Parnian, Mohammad Javad & Amirkhanlou, Gholam Reza, 2015. "The effect of sulfonated poly (ether ether ketone) as the electrode ionomer for self-humidifying nanocomposite proton exchange membrane fuel cells," Energy, Elsevier, vol. 82(C), pages 746-757.
    2. Stoševski, Ivan & Krstić, Jelena & Milikić, Jadranka & Šljukić, Biljana & Kačarević-Popović, Zorica & Mentus, Slavko & Miljanić, Šćepan, 2016. "Radiolitically synthesized nano Ag/C catalysts for oxygen reduction and borohydride oxidation reactions in alkaline media, for potential applications in fuel cells," Energy, Elsevier, vol. 101(C), pages 79-90.
    3. Chou, Chang-Chen & Liu, Cheng-Hong & Chen, Bing-Hung, 2014. "Effects of reduction temperature and pH value of polyol process on reduced graphene oxide supported Pt electrocatalysts for oxygen reduction reaction," Energy, Elsevier, vol. 70(C), pages 231-238.
    4. Sayadi, Parvin & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Study of hydrogen crossover and proton conductivity of self-humidifying nanocomposite proton exchange membrane based on sulfonated poly (ether ether ketone)," Energy, Elsevier, vol. 94(C), pages 292-303.
    5. Gong, Wenyin & Cai, Zhihua, 2013. "Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution," Energy, Elsevier, vol. 59(C), pages 356-364.
    6. Park, Taehyun & Chang, Ikwhang & Lee, Yoon Ho & Ji, Sanghoon & Cha, Suk Won, 2014. "Analysis of operational characteristics of polymer electrolyte fuel cell with expanded graphite flow-field plates via electrochemical impedance investigation," Energy, Elsevier, vol. 66(C), pages 77-81.
    7. Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
    8. Song, Xingjuan & Zhang, Dongming, 2014. "Bimetallic Ag–Ni/C particles as cathode catalyst in AFCs (alkaline fuel cells)," Energy, Elsevier, vol. 70(C), pages 223-230.
    9. Fofana, Daouda & Natarajan, Sadesh Kumar & Hamelin, Jean & Benard, Pierre, 2014. "Low platinum, high limiting current density of the PEMFC (proton exchange membrane fuel cell) based on multilayer cathode catalyst approach," Energy, Elsevier, vol. 64(C), pages 398-403.
    10. Beltrán-Gastélum, M. & Salazar-Gastélum, M.I. & Félix-Navarro, R.M. & Pérez-Sicairos, S. & Reynoso-Soto, E.A. & Lin, S.W. & Flores-Hernández, J.R. & Romero-Castañón, T. & Albarrán-Sánchez, I.L. & Para, 2016. "Evaluation of PtAu/MWCNT (Multiwalled Carbon Nanotubes) electrocatalyst performance as cathode of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 109(C), pages 446-455.
    11. Blal, Mohamed & Benatiallah, Ali & NeÇaibia, Ammar & Lachtar, Salah & Sahouane, Nordine & Belasri, Ahmed, 2019. "Contribution and investigation to compare models parameters of (PEMFC), comprehensives review of fuel cell models and their degradation," Energy, Elsevier, vol. 168(C), pages 182-199.
    12. Ren, Zhijun & Zhang, Dongming & Wang, Zaiyi, 2012. "Stacks with TiN/titanium as the bipolar plate for PEMFCs," Energy, Elsevier, vol. 48(1), pages 577-581.
    13. Mirzaei, Farokh & Parnian, Mohammad Javad & Rowshanzamir, Soosan, 2017. "Durability investigation and performance study of hydrothermal synthesized platinum-multi walled carbon nanotube nanocomposite catalyst for proton exchange membrane fuel cell," Energy, Elsevier, vol. 138(C), pages 696-705.
    14. Bizon, Nicu & Radut, Marin & Oproescu, Mihai, 2015. "Energy control strategies for the Fuel Cell Hybrid Power Source under unknown load profile," Energy, Elsevier, vol. 86(C), pages 31-41.
    15. Alipour Najmi, Ali & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Investigation of NaOH concentration effect in injected fuel on the performance of passive direct methanol alkaline fuel cell with modified cation exchange membrane," Energy, Elsevier, vol. 94(C), pages 589-599.
    16. Boyaci San, Fatma Gül & Isik-Gulsac, Isil & Okur, Osman, 2013. "Analysis of the polymer composite bipolar plate properties on the performance of PEMFC (polymer electrolyte membrane fuel cells) by RSM (response surface methodology)," Energy, Elsevier, vol. 55(C), pages 1067-1075.
    17. Díaz, Manuel Antonio & Iranzo, Alfredo & Rosa, Felipe & Isorna, Fernando & López, Eduardo & Bolivar, Juan Pedro, 2015. "Effect of carbon dioxide on the contamination of low temperature and high temperature PEM (polymer electrolyte membrane) fuel cells. Influence of temperature, relative humidity and analysis of regener," Energy, Elsevier, vol. 90(P1), pages 299-309.
    18. An, Myung-Gi & Mehmood, Asad & Hwang, Jinyeon & Ha, Heung Yong, 2016. "A novel method of methanol concentration control through feedback of the amplitudes of output voltage fluctuations for direct methanol fuel cells," Energy, Elsevier, vol. 100(C), pages 217-226.
    19. Oh, Taek Hyun & Gang, Byeong Gyu & Kim, Hyuntak & Kwon, Sejin, 2015. "Sodium borohydride hydrogen generator using Co–P/Ni foam catalysts for 200 W proton exchange membrane fuel cell system," Energy, Elsevier, vol. 90(P1), pages 1163-1170.
    20. Wang, Luwen & He, Mingyan & Hu, Yue & Zhang, Yufeng & Liu, Xiaowei & Wang, Gaofeng, 2015. "A “4-cell” modular passive DMFC (direct methanol fuel cell) stack for portable applications," Energy, Elsevier, vol. 82(C), pages 229-235.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:51:y:2013:i:c:p:230-236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.