IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v47y2012i1p25-30.html
   My bibliography  Save this article

Deoxygenation of microalgal oil into hydrocarbon with precious metal catalysts: Optimization of reaction conditions and supports

Author

Listed:
  • Na, Jeong-Geol
  • Yi, Bo Eun
  • Han, Jun Kyu
  • Oh, You-Kwan
  • Park, Jong-Ho
  • Jung, Tae Sung
  • Han, Sang Sup
  • Yoon, Hyung Chul
  • Kim, Jong-Nam
  • Lee, Hyunjoo
  • Ko, Chang Hyun

Abstract

Deoxygenation of microalgal oil obtained by pyrolysis of microalgae was carried out for the production of hydrocarbon fuel from biomass by metal supported catalyst. Oleic acid was used as a model reactant to select an optimized catalyst. Effects of support, metal species, and metal loading on catalytic performance were investigated. Activated carbon showed better performance than silica as a support. Considering various factors in model reaction, such as metal loading, reaction temperature, activity for deoxygenation, and selectivity for decarboxylation, 5wt% platinum supported on activated carbon (5wt% Pt/C) was selected as an optimized catalyst. Based on these results, deoxygenation of the pyrolysis oil from Chlorella sp. KR-1 was conducted at 623 and 673K over this selected catalyst. The product after catalytic deoxygenation was mainly composed of pure hydrocarbons, and its oxygen content was below 2.0%. The fraction in the product of which the boiling point was less than 623K was about 90%. These properties could allow this upgraded oil to be used for transportation fuel. However, the degree of oxygen removal with microalgal pyrolysis oil was lower than that with oleic acid, implying that impurities in the pyrolysis oil may inhibit the deoxygenation reaction.

Suggested Citation

  • Na, Jeong-Geol & Yi, Bo Eun & Han, Jun Kyu & Oh, You-Kwan & Park, Jong-Ho & Jung, Tae Sung & Han, Sang Sup & Yoon, Hyung Chul & Kim, Jong-Nam & Lee, Hyunjoo & Ko, Chang Hyun, 2012. "Deoxygenation of microalgal oil into hydrocarbon with precious metal catalysts: Optimization of reaction conditions and supports," Energy, Elsevier, vol. 47(1), pages 25-30.
  • Handle: RePEc:eee:energy:v:47:y:2012:i:1:p:25-30
    DOI: 10.1016/j.energy.2012.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212005348
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.07.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark Huntley & Donald Redalje, 2007. "CO 2 Mitigation and Renewable Oil from Photosynthetic Microbes: A New Appraisal," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(4), pages 573-608, May.
    2. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pattanaik, Bhabani Prasanna & Misra, Rahul Dev, 2017. "Effect of reaction pathway and operating parameters on the deoxygenation of vegetable oils to produce diesel range hydrocarbon fuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 545-557.
    2. Liu, Guangmin & Qiao, Lina & Zhang, Hong & Zhao, Dan & Su, Xudong, 2014. "The effects of illumination factors on the growth and HCO3− fixation of microalgae in an experiment culture system," Energy, Elsevier, vol. 78(C), pages 40-47.
    3. Wei Jin & Laura Pastor-Pérez & Juan J. Villora-Pico & Mercedes M. Pastor-Blas & Antonio Sepúlveda-Escribano & Sai Gu & Nikolaos D. Charisiou & Kyriakos Papageridis & Maria A. Goula & Tomas R. Reina, 2019. "Catalytic Conversion of Palm Oil to Bio-Hydrogenated Diesel over Novel N-Doped Activated Carbon Supported Pt Nanoparticles," Energies, MDPI, vol. 13(1), pages 1-15, December.
    4. López-González, D. & Fernandez-Lopez, M. & Valverde, J.L. & Sanchez-Silva, L., 2014. "Pyrolysis of three different types of microalgae: Kinetic and evolved gas analysis," Energy, Elsevier, vol. 73(C), pages 33-43.
    5. Hu, Zhiquan & Zheng, Yang & Yan, Feng & Xiao, Bo & Liu, Shiming, 2013. "Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): Product distribution and bio-oil characterization," Energy, Elsevier, vol. 52(C), pages 119-125.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maity, Jyoti Prakash & Hou, Chia-Peng & Majumder, Dip & Bundschuh, Jochen & Kulp, Thomas R. & Chen, Chien-Yen & Chuang, Lu-Te & Nathan Chen, Ching-Nen & Jean, Jiin-Shuh & Yang, Tsui-Chu & Chen, Chien-, 2014. "The production of biofuel and bioelectricity associated with wastewater treatment by green algae," Energy, Elsevier, vol. 78(C), pages 94-103.
    2. Bharathiraja, B. & Chakravarthy, M. & Ranjith Kumar, R. & Yogendran, D. & Yuvaraj, D. & Jayamuthunagai, J. & Praveen Kumar, R. & Palani, S., 2015. "Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 634-653.
    3. Singh, Anoop & Olsen, Stig Irving, 2011. "A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels," Applied Energy, Elsevier, vol. 88(10), pages 3548-3555.
    4. Tandon, Puja & Jin, Qiang, 2017. "Microalgae culture enhancement through key microbial approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1089-1099.
    5. Banerjee, Sanjukta & Banerjee, Srijoni & Ghosh, Ananta K. & Das, Debabrata, 2020. "Maneuvering the genetic and metabolic pathway for improving biofuel production in algae: Present status and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Katarzyna, Ledwoch & Sai, Gu & Singh, Oinam Avijeet, 2015. "Non-enclosure methods for non-suspended microalgae cultivation: literature review and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1418-1427.
    7. Tabatabaei, Meisam & Tohidfar, Masoud & Jouzani, Gholamreza Salehi & Safarnejad, Mohammadreza & Pazouki, Mohammad, 2011. "Biodiesel production from genetically engineered microalgae: Future of bioenergy in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1918-1927, May.
    8. Liu, Junying & Song, Yunmeng & Qiu, Wen, 2017. "Oleaginous microalgae Nannochloropsis as a new model for biofuel production: Review & analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 154-162.
    9. Maity, Jyoti Prakash & Bundschuh, Jochen & Chen, Chien-Yen & Bhattacharya, Prosun, 2014. "Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives – A mini review," Energy, Elsevier, vol. 78(C), pages 104-113.
    10. Qianrong Jiang & Honglei Chen & Zeding Fu & Xiaohua Fu & Jiacheng Wang & Yingqi Liang & Hailong Yin & Junbo Yang & Jie Jiang & Xinxin Yang & He Wang & Zhiming Liu & Rongkui Su, 2022. "Current Progress, Challenges and Perspectives in the Microalgal-Bacterial Aerobic Granular Sludge Process: A Review," IJERPH, MDPI, vol. 19(21), pages 1-19, October.
    11. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
    12. Behnam Tabatabai & Afua Adusei & Alok Kumar Shrivastava & Prashant Kumar Singh & Viji Sitther, 2020. "Nitrogen Deprivation in Fremyella diplosiphon Augments Lipid Production without Affecting Growth," Energies, MDPI, vol. 13(21), pages 1-12, November.
    13. Peralta-Ruiz, Y. & González-Delgado, A.-D. & Kafarov, V., 2013. "Evaluation of alternatives for microalgae oil extraction based on exergy analysis," Applied Energy, Elsevier, vol. 101(C), pages 226-236.
    14. Terigar, Beatrice G. & Theegala, Chandra S., 2014. "Investigating the interdependence between cell density, biomass productivity, and lipid productivity to maximize biofuel feedstock production from outdoor microalgal cultures," Renewable Energy, Elsevier, vol. 64(C), pages 238-243.
    15. Rahman, Syed Masiur & Khondaker, A.N., 2012. "Mitigation measures to reduce greenhouse gas emissions and enhance carbon capture and storage in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2446-2460.
    16. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    17. Patel, Akash & Gami, Bharat & Patel, Pankaj & Patel, Beena, 2017. "Microalgae: Antiquity to era of integrated technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 535-547.
    18. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    19. Dębowski, Marcin & Zieliński, Marcin & Grala, Anna & Dudek, Magda, 2013. "Algae biomass as an alternative substrate in biogas production technologies—Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 596-604.
    20. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:47:y:2012:i:1:p:25-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.