IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i2p1206-1213.html
   My bibliography  Save this article

Influence of primary air ratio on flow and combustion characteristics and NOx emissions of a new swirl coal burner

Author

Listed:
  • Jing, Jianping
  • Li, Zhengqi
  • Zhu, Qunyi
  • Chen, Zhichao
  • Ren, Feng

Abstract

Cold airflow experiments on a small-scale burner model, as well as in situ experiments on a centrally fuel-rich swirl coal combustion burner were conducted. Measurements were taken from within a 300 MWe wall-fired pulverized-coal utility boiler installed with eight of centrally fuel-rich swirl coal combustion burners in the bottom row of the furnace during experiments. Various primary air ratios, flow characteristics, gas temperature and gas species concentrations in the burner region were measured. The results of these analyses show that with decreasing primary air ratio, the swirl intensity of air, divergence angles and maximum length and diameter of the central recirculation zone all increased, and the turbulence intensity of the jet flow peaked but decayed quickly. In the burner nozzle region, gas temperature, temperature gradient and CO concentration increased with decreasing primary air ratio, while O2 and NOx concentration decreased. Different primary air ratios, the gas temperatures and gas species concentrations in the side-wall region varied slightly.

Suggested Citation

  • Jing, Jianping & Li, Zhengqi & Zhu, Qunyi & Chen, Zhichao & Ren, Feng, 2011. "Influence of primary air ratio on flow and combustion characteristics and NOx emissions of a new swirl coal burner," Energy, Elsevier, vol. 36(2), pages 1206-1213.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:2:p:1206-1213
    DOI: 10.1016/j.energy.2010.11.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210006705
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.11.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Weidong & Li, Youyi & Lin, Zhengchun & Zhang, Mingchuan, 2010. "PDA research on a novel pulverized coal combustion technology for a large utility boiler," Energy, Elsevier, vol. 35(5), pages 2141-2148.
    2. Staiger, B. & Unterberger, S. & Berger, R. & Hein, Klaus R.G., 2005. "Development of an air staging technology to reduce NOx emissions in grate fired boilers," Energy, Elsevier, vol. 30(8), pages 1429-1438.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Neng & Li, Zhengqi & Wang, Jiaquan & Zhang, Bin & Zeng, Lingyan & Chen, Zhichao & Wang, Haopeng & Liu, Xiaoying & Zhang, Xiaoyan, 2018. "Experimental investigations on air/particle flow characteristics in a 2000 t/d GSP pulverized coal gasifier with an improved burner," Energy, Elsevier, vol. 165(PB), pages 432-441.
    2. Dios, M. & Souto, J.A. & Casares, J.J., 2013. "Experimental development of CO2, SO2 and NOx emission factors for mixed lignite and subbituminous coal-fired power plant," Energy, Elsevier, vol. 53(C), pages 40-51.
    3. Li, Zixiang & Miao, Zhengqing & Zhou, Yan & Wen, Shurong & Li, Jiangtao, 2018. "Influence of increased primary air ratio on boiler performance in a 660 MW brown coal boiler," Energy, Elsevier, vol. 152(C), pages 804-817.
    4. Hua, Yun & Nie, Wen & Liu, Qiang & Yin, Shuai & Peng, Huitian, 2020. "Effect of wind curtain on dust extraction in rock tunnel working face: CFD and field measurement analysis," Energy, Elsevier, vol. 197(C).
    5. Ling, Zhongqian & Zhou, Hao & Ren, Tao, 2015. "Effect of the flue gas recirculation supply location on the heavy oil combustion and NOx emission characteristics within a pilot furnace fired by a swirl burner," Energy, Elsevier, vol. 91(C), pages 110-116.
    6. Qiao, Yanyu & Li, Song & Jing, Xinjing & Chen, Zhichao & Fan, Subo & Li, Zhengqi, 2022. "Combustion and NOx formation characteristics from a 330 MWe retrofitted anthracite-fired utility boiler with swirl burner under deeply-staged-combustion," Energy, Elsevier, vol. 258(C).
    7. Chen, Zhichao & Li, Zhengqi & Wang, Zhenwang & Liu, Chunlong & Chen, Lizhe & Zhu, Qunyi & Li, Yuan, 2011. "The influence of distance between adjacent rings on the gas/particle flow characteristics of a conical rings concentrator," Energy, Elsevier, vol. 36(5), pages 2557-2564.
    8. Li, Zixiang & Miao, Zhengqing & Shen, Xusheng & Li, Jiangtao, 2018. "Effects of momentum ratio and velocity difference on combustion performance in lignite-fired pulverized boiler," Energy, Elsevier, vol. 165(PA), pages 825-839.
    9. Darbandi, Masoud & Fatin, Ali & Bordbar, Hadi, 2020. "Numerical study on NOx reduction in a large-scale heavy fuel oil-fired boiler using suitable burner adjustments," Energy, Elsevier, vol. 199(C).
    10. Yonmo Sung & Seungtae Kim & Byunghwa Jang & Changyong Oh & Taeyun Jee & Soonil Park & Kwansic Park & Siyoul Chang, 2021. "Nitric Oxide Emission Reduction in Reheating Furnaces through Burner and Furnace Air-Staged Combustions," Energies, MDPI, vol. 14(6), pages 1-15, March.
    11. Zeng, Lingyan & Li, Zhengqi & Zhao, Guangbo & Li, Jing & Zhang, Fucheng & Shen, Shanping & Chen, Lizhe, 2011. "The influence of swirl burner structure on the gas/particle flow characteristics," Energy, Elsevier, vol. 36(10), pages 6184-6194.
    12. Chen, Zhichao & Wang, Zhenwang & Li, Zhengqi & Xie, Yiquan & Ti, Shuguang & Zhu, Qunyi, 2014. "Experimental investigation into pulverized-coal combustion performance and NO formation using sub-stoichiometric ratios," Energy, Elsevier, vol. 73(C), pages 844-855.
    13. Chen, Zhichao & Qiao, Yanyu & Guan, Shuo & Wang, Zhenwang & Zheng, Yu & Zeng, Lingyan & Li, Zhengqi, 2022. "Effect of inner and outer secondary air ratios on ignition, C and N conversion process of pulverized coal in swirl burner under sub-stoichiometric ratio," Energy, Elsevier, vol. 239(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing, Jianping & Li, Zhengqi & Zhu, Qunyi & Chen, Zhichao & Wang, Lin & Chen, Lizhe, 2011. "Influence of the outer secondary air vane angle on the gas/particle flow characteristics near the double swirl flow burner region," Energy, Elsevier, vol. 36(1), pages 258-267.
    2. Jing, Jianping & Li, Zhengqi & Wang, Lin & Chen, Lizhe & Yang, Guohua, 2011. "Influence of secondary air mass flow rates on gas/particle flow characteristics near the swirl burner region," Energy, Elsevier, vol. 36(5), pages 3599-3605.
    3. Zhang, Xin & Chen, Zhichao & Hou, Jian & Liu, Zheng & Zeng, Lingyan & Li, Zhengqi, 2022. "Evaluation of wide-range coal combustion performance of a novel down-fired combustion technology based on gas–solid two-phase flow characteristics," Energy, Elsevier, vol. 248(C).
    4. Yin, Chungen & Rosendahl, Lasse & Clausen, Sønnik & Hvid, Søren L., 2012. "Characterizing and modeling of an 88 MW grate-fired boiler burning wheat straw: Experience and lessons," Energy, Elsevier, vol. 41(1), pages 473-482.
    5. Robert Wejkowski & Sylwester Kalisz & Mateusz Tymoszuk & Szymon Ciukaj & Izabella Maj, 2021. "Full-Scale Investigation of Dry Sorbent Injection for NO x Emission Control and Mercury Retention," Energies, MDPI, vol. 14(22), pages 1-13, November.
    6. Liu, Chunlong & Li, Zhengqi & Zeng, Lingyan & Zhang, Qinghua & Hu, Richa & Zhang, Xusheng & Guo, Liang & Huang, Yong & Yang, Xianwei & Chen, Liheng, 2016. "Gas/particle two-phase flow characteristics of a down-fired 350 MWe supercritical utility boiler at different tertiary air ratios," Energy, Elsevier, vol. 102(C), pages 54-64.
    7. Fang, Neng & Li, Zhengqi & Xie, Cheng & Liu, Shuxuan & Lu, Yue & Zeng, Lingyan & Chen, Zhichao, 2021. "Influence of the multi-burner bias angle on the air/particle flow characteristics in an improved fly ash entrained-flow gasifier," Energy, Elsevier, vol. 234(C).
    8. Zeng, Lingyan & Li, Zhengqi & Zhao, Guangbo & Li, Jing & Zhang, Fucheng & Shen, Shanping & Chen, Lizhe, 2011. "The influence of swirl burner structure on the gas/particle flow characteristics," Energy, Elsevier, vol. 36(10), pages 6184-6194.
    9. Lin Boqiang & Kui Liu, 2017. "Using LMDI to Analyze the Decoupling of Carbon Dioxide Emissions from China’s Heavy Industry," Sustainability, MDPI, vol. 9(7), pages 1-16, July.
    10. Wang, Qingxiang & Chen, Zhichao & Wang, Liang & Zeng, Lingyan & Li, Zhengqi, 2018. "Application of eccentric-swirl-secondary-air combustion technology for high-efficiency and low-NOx performance on a large-scale down-fired boiler with swirl burners," Applied Energy, Elsevier, vol. 223(C), pages 358-368.
    11. Cong, Kunlin & Zhang, Yanguo & Han, Feng & Li, Qinghai, 2019. "Influence of particle sizes on combustion characteristics of coal particles in oxygen-deficient atmosphere," Energy, Elsevier, vol. 170(C), pages 840-848.
    12. Liu, Chunlong & Li, Zhengqi & Kong, Weiguang & Zhao, Yang & Chen, Zhichao, 2010. "Bituminous coal combustion in a full-scale start-up ignition burner: Influence of the excess air ratio," Energy, Elsevier, vol. 35(10), pages 4102-4106.
    13. Zhao, Zhenghui & Wang, Ruikun & Wu, Junhong & Yin, Qianqian & Wang, Chunbo, 2019. "Bottom ash characteristics and pollutant emission during the co-combustion of pulverized coal with high mass-percentage sewage sludge," Energy, Elsevier, vol. 171(C), pages 809-818.
    14. Wang, Qingxiang & Chen, Zhichao & Li, Liankai & Zeng, Lingyan & Li, Zhengqi, 2020. "Achievement in ultra-low-load combustion stability for an anthracite- and down-fired boiler after applying novel swirl burners: From laboratory experiments to industrial applications," Energy, Elsevier, vol. 192(C).
    15. Wang, Qingxiang & Chen, Zhichao & Wang, Jiaquan & Zeng, Lingyan & Zhang, Xin & Li, Xiaoguang & Li, Zhengqi, 2018. "Effects of secondary air distribution in primary combustion zone on combustion and NOx emissions of a large-scale down-fired boiler with air staging," Energy, Elsevier, vol. 165(PB), pages 399-410.
    16. Sha, Long & Liu, Hui & Xu, Lianfei & Cao, Qingxi & Li, Qi & Wu, Shaohua, 2012. "Research on the elliptic aerodynamic field in a 1000 MW dual circle tangential firing single furnace ultra supercritical boiler," Energy, Elsevier, vol. 46(1), pages 364-373.
    17. Li, Zhengqi & Liu, Guangkui & Chen, Zhichao & Zeng, Lingyan & Zhu, Qunyi, 2013. "Effect of angle of arch-supplied overfire air on flow, combustion characteristics and NOx emissions of a down-fired utility boiler," Energy, Elsevier, vol. 59(C), pages 377-386.
    18. Ren, Feng & Li, Zhengqi & Liu, Guangkui & Chen, Zhichao & Zhu, Qunyi, 2011. "Combustion and NOx emissions characteristics of a down-fired 660-MWe utility boiler retro-fitted with air-surrounding-fuel concept," Energy, Elsevier, vol. 36(1), pages 70-77.
    19. Liu, Chunlong & Li, Zhengqi & Jing, Xinjing & Xie, Yiquan & Zhang, Qinghua & Zong, Qiudong, 2014. "Experimental investigation into gas/particle flow in a down-fired 350 MWe supercritical utility boiler at different over-fire air ratios," Energy, Elsevier, vol. 64(C), pages 771-778.
    20. Kuang, Min & Li, Zhengqi & Zhang, Yan & Chen, Xiachao & Jia, Jinzhao & Zhu, Qunyi, 2012. "Asymmetric combustion characteristics and NOx emissions of a down-fired 300 MWe utility boiler at different boiler loads," Energy, Elsevier, vol. 37(1), pages 580-590.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:2:p:1206-1213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.