IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v41y2012i1p473-482.html
   My bibliography  Save this article

Characterizing and modeling of an 88 MW grate-fired boiler burning wheat straw: Experience and lessons

Author

Listed:
  • Yin, Chungen
  • Rosendahl, Lasse
  • Clausen, Sønnik
  • Hvid, Søren L.

Abstract

Grate-firing is one of the main technologies currently used for biomass combustion for heat and power production. However, grate-firing is yet to be further developed, towards a better technology for biomass combustion, particularly towards higher efficiency, lower emissions, and better reliability and availability. To better understand grate-firing of biomass and to establish a reliable but relatively simple Computational Fluid Dynamics (CFD) modeling methodology for industrial applications, biomass combustion in a number of different grate boilers has been measured and modeled. As one of the case studies, modeling effort on an 88 MW grate-fired boiler burning wheat straw is presented in this paper. Different modeling issues and their expected impacts on CFD analysis of the kind of grate boilers are discussed. The modeling results are compared with in-flame measurements in the 88 MW boiler, which shows an acceptable agreement. The discrepancies are analyzed from different aspects. The lessons learned and experience gained from this and other case studies are summarized and discussed in detail, which can facilitate the modeling validation effort as well as improve grate-firing technology. Some of the addressed measures will be tested in a modern 500 kW grate boiler rig.

Suggested Citation

  • Yin, Chungen & Rosendahl, Lasse & Clausen, Sønnik & Hvid, Søren L., 2012. "Characterizing and modeling of an 88 MW grate-fired boiler burning wheat straw: Experience and lessons," Energy, Elsevier, vol. 41(1), pages 473-482.
  • Handle: RePEc:eee:energy:v:41:y:2012:i:1:p:473-482
    DOI: 10.1016/j.energy.2012.02.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212001648
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.02.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Zhaosheng & Ma, Xiaoqian & Liao, Yanfen, 2010. "Mathematical modeling of combustion in a grate-fired boiler burning straw and effect of operating conditions under air- and oxygen-enriched atmospheres," Renewable Energy, Elsevier, vol. 35(5), pages 895-903.
    2. Costa, M. & Dell'Isola, M. & Massarotti, N., 2009. "Numerical analysis of the thermo-fluid-dynamic field in the combustion chamber of an incinerator plant," Energy, Elsevier, vol. 34(12), pages 2075-2086.
    3. Staiger, B. & Unterberger, S. & Berger, R. & Hein, Klaus R.G., 2005. "Development of an air staging technology to reduce NOx emissions in grate fired boilers," Energy, Elsevier, vol. 30(8), pages 1429-1438.
    4. Venturini, P. & Borello, D. & Iossa, C. & Lentini, D. & Rispoli, F., 2010. "Modeling of multiphase combustion and deposit formation in a biomass-fed furnace," Energy, Elsevier, vol. 35(7), pages 3008-3021.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Garbacz, Przemysław & Wejkowski, Robert, 2020. "Numerical research on the SNCR method in a grate boiler equipped with the innovative FJBS system," Energy, Elsevier, vol. 207(C).
    2. Karim, Md Rezwanul & Bhuiyan, Arafat Ahmed & Sarhan, Abd Alhamid Rafea & Naser, Jamal, 2020. "CFD simulation of biomass thermal conversion under air/oxy-fuel conditions in a reciprocating grate boiler," Renewable Energy, Elsevier, vol. 146(C), pages 1416-1428.
    3. Mingtao Jiang & Adrian C. H. Lai & Adrian Wing-Keung Law, 2020. "Solid Waste Incineration Modelling for Advanced Moving Grate Incinerators," Sustainability, MDPI, vol. 12(19), pages 1-15, September.
    4. Ren, Qiangqiang & Zhao, Changsui, 2015. "Evolution of fuel-N in gas phase during biomass pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 408-418.
    5. Huang, Y.W. & Chen, M.Q. & Li, Y. & Guo, J., 2016. "Modeling of chemical exergy of agricultural biomass using improved general regression neural network," Energy, Elsevier, vol. 114(C), pages 1164-1175.
    6. María E. Arce & Ángeles Saavedra & José L. Míguez & Enrique Granada & Antón Cacabelos, 2013. "Biomass Fuel and Combustion Conditions Selection in a Fixed Bed Combustor," Energies, MDPI, vol. 6(11), pages 1-17, November.
    7. Wei, Zhongbao & Li, Xiaolu & Xu, Lijun & Cheng, Yanting, 2013. "Comparative study of computational intelligence approaches for NOx reduction of coal-fired boiler," Energy, Elsevier, vol. 55(C), pages 683-692.
    8. Tu, Yaojie & Zhou, Anqi & Xu, Mingchen & Yang, Wenming & Siah, Keng Boon & Subbaiah, Prabakaran, 2018. "NOX reduction in a 40 t/h biomass fired grate boiler using internal flue gas recirculation technology," Applied Energy, Elsevier, vol. 220(C), pages 962-973.
    9. Hernik, Bartłomiej, 2015. "Numerical calculations of the WR-40 boiler with a furnace jet boiler system," Energy, Elsevier, vol. 92(P1), pages 54-66.
    10. Laubscher, Ryno & De Villiers, Etienne, 2021. "Integrated mathematical modelling of a 105 t/h biomass fired industrial watertube boiler system with varying fuel moisture content," Energy, Elsevier, vol. 228(C).
    11. Mohammad Hosseini Rahdar & Fuzhan Nasiri, 2020. "Operation Adaptation of Moving Bed Biomass Combustors under Various Waste Fuel Conditions," Energies, MDPI, vol. 13(23), pages 1-18, December.
    12. Costa, M. & Massarotti, N. & Indrizzi, V. & Rajh, B. & Yin, C. & Samec, N., 2014. "Engineering bed models for solid fuel conversion process in grate-fired boilers," Energy, Elsevier, vol. 77(C), pages 244-253.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tu, Yaojie & Zhou, Anqi & Xu, Mingchen & Yang, Wenming & Siah, Keng Boon & Subbaiah, Prabakaran, 2018. "NOX reduction in a 40 t/h biomass fired grate boiler using internal flue gas recirculation technology," Applied Energy, Elsevier, vol. 220(C), pages 962-973.
    2. Costa, M. & Massarotti, N. & Indrizzi, V. & Rajh, B. & Yin, C. & Samec, N., 2014. "Engineering bed models for solid fuel conversion process in grate-fired boilers," Energy, Elsevier, vol. 77(C), pages 244-253.
    3. Robert Wejkowski & Sylwester Kalisz & Mateusz Tymoszuk & Szymon Ciukaj & Izabella Maj, 2021. "Full-Scale Investigation of Dry Sorbent Injection for NO x Emission Control and Mercury Retention," Energies, MDPI, vol. 14(22), pages 1-13, November.
    4. Djurović, D. & Nemoda, S. & Repić, B. & Dakić, D. & Adzić, M., 2015. "Influence of biomass furnace volume change on flue gases burn out process," Renewable Energy, Elsevier, vol. 76(C), pages 1-6.
    5. Venturini, P. & Borello, D. & Iossa, C. & Lentini, D. & Rispoli, F., 2010. "Modeling of multiphase combustion and deposit formation in a biomass-fed furnace," Energy, Elsevier, vol. 35(7), pages 3008-3021.
    6. Gu, Tianbao & Yin, Chungen & Ma, Wenchao & Chen, Guanyi, 2019. "Municipal solid waste incineration in a packed bed: A comprehensive modeling study with experimental validation," Applied Energy, Elsevier, vol. 247(C), pages 127-139.
    7. Wang, Qingxiang & Chen, Zhichao & Wang, Liang & Zeng, Lingyan & Li, Zhengqi, 2018. "Application of eccentric-swirl-secondary-air combustion technology for high-efficiency and low-NOx performance on a large-scale down-fired boiler with swirl burners," Applied Energy, Elsevier, vol. 223(C), pages 358-368.
    8. Jing, Jianping & Li, Zhengqi & Zhu, Qunyi & Chen, Zhichao & Wang, Lin & Chen, Lizhe, 2011. "Influence of the outer secondary air vane angle on the gas/particle flow characteristics near the double swirl flow burner region," Energy, Elsevier, vol. 36(1), pages 258-267.
    9. Cong, Kunlin & Zhang, Yanguo & Han, Feng & Li, Qinghai, 2019. "Influence of particle sizes on combustion characteristics of coal particles in oxygen-deficient atmosphere," Energy, Elsevier, vol. 170(C), pages 840-848.
    10. Zhao, Zhenghui & Wang, Ruikun & Wu, Junhong & Yin, Qianqian & Wang, Chunbo, 2019. "Bottom ash characteristics and pollutant emission during the co-combustion of pulverized coal with high mass-percentage sewage sludge," Energy, Elsevier, vol. 171(C), pages 809-818.
    11. Wang, Qingxiang & Chen, Zhichao & Wang, Jiaquan & Zeng, Lingyan & Zhang, Xin & Li, Xiaoguang & Li, Zhengqi, 2018. "Effects of secondary air distribution in primary combustion zone on combustion and NOx emissions of a large-scale down-fired boiler with air staging," Energy, Elsevier, vol. 165(PB), pages 399-410.
    12. Cai, Yongtie & Tay, Kunlin & Zheng, Zhimin & Yang, Wenming & Wang, Hui & Zeng, Guang & Li, Zhiwang & Keng Boon, Siah & Subbaiah, Prabakaran, 2018. "Modeling of ash formation and deposition processes in coal and biomass fired boilers: A comprehensive review," Applied Energy, Elsevier, vol. 230(C), pages 1447-1544.
    13. Sha, Long & Liu, Hui & Xu, Lianfei & Cao, Qingxi & Li, Qi & Wu, Shaohua, 2012. "Research on the elliptic aerodynamic field in a 1000 MW dual circle tangential firing single furnace ultra supercritical boiler," Energy, Elsevier, vol. 46(1), pages 364-373.
    14. Borello, Domenico & Venturini, Paolo & Rispoli, Franco & Rafael, Saavedra G.Z., 2013. "Prediction of multiphase combustion and ash deposition within a biomass furnace," Applied Energy, Elsevier, vol. 101(C), pages 413-422.
    15. Ren, Qiangqiang & Zhao, Changsui, 2015. "Evolution of fuel-N in gas phase during biomass pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 408-418.
    16. Li, Zhengqi & Liu, Guangkui & Chen, Zhichao & Zeng, Lingyan & Zhu, Qunyi, 2013. "Effect of angle of arch-supplied overfire air on flow, combustion characteristics and NOx emissions of a down-fired utility boiler," Energy, Elsevier, vol. 59(C), pages 377-386.
    17. Luan, Chao & You, Changfu & Zhang, Dongke, 2014. "Composition and sintering characteristics of ashes from co-firing of coal and biomass in a laboratory-scale drop tube furnace," Energy, Elsevier, vol. 69(C), pages 562-570.
    18. Jing, Jianping & Li, Zhengqi & Zhu, Qunyi & Chen, Zhichao & Ren, Feng, 2011. "Influence of primary air ratio on flow and combustion characteristics and NOx emissions of a new swirl coal burner," Energy, Elsevier, vol. 36(2), pages 1206-1213.
    19. Kobyłecki, Rafał & Zarzycki, Robert & Bis, Zbigniew & Panowski, Marcin & Wiński, Mateusz, 2021. "Numerical analysis of the combustion of straw and wood in a stoker boiler with vibrating grate," Energy, Elsevier, vol. 222(C).
    20. Ameur, Houari & Bouzit, Mohamed, 2013. "Power consumption for stirring shear thinning fluids by two-blade impeller," Energy, Elsevier, vol. 50(C), pages 326-332.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:41:y:2012:i:1:p:473-482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.