IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v328y2025ics0360544225021905.html
   My bibliography  Save this article

Investigation of energy consumption and local thermal comfort through the transient thermophysiological model and human-body exergy model for air-carrying energy system

Author

Listed:
  • Huang, Yuting
  • Gong, Guangcai
  • Wang, Yuxin
  • Chen, Xiang
  • Shi, Xing
  • Liu, Jiaqing

Abstract

An air-carrying energy system (ACES) is a novel terminal for air conditioning with energy-saving potential. However, there is a challenge for optimizing the system by reducing energy consumption while improving thermal comfort. Thus, this study coupling simulated non-uniform thermal environment and human body by a transient three-dimensional model integrating with the thermophysiological model. Based on the experimental and simulated results, the local thermal comfort over time was evaluated by energy and exergy analysis to explore the convenient predicted formula of exergy consumption, and then the energy consumptions of different heating/cooling radiant diffuse terminals were compared under the same thermal comfort. The results showed that the simulated temperature of indoor air and human thermal plume were consistent with the experiments (Average error is less than 5 %). Local human-body exergy analysis was correlated with PMV by being divided into the torso and other body parts. The convenient predicted formula of exergy consumption for multiple body parts was accurate with the goodness of fit R2 > 0.98. The ceiling cooling was 36 % more energy efficient than the sidewall cooling. Optimized system of the ceiling heating reduced by 14 % energy consumption. This paper provides a valuable reference for optimizing systems based on comfort and energy saving.

Suggested Citation

  • Huang, Yuting & Gong, Guangcai & Wang, Yuxin & Chen, Xiang & Shi, Xing & Liu, Jiaqing, 2025. "Investigation of energy consumption and local thermal comfort through the transient thermophysiological model and human-body exergy model for air-carrying energy system," Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021905
    DOI: 10.1016/j.energy.2025.136548
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225021905
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136548?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Li, Han & Hu, Haiyu & Wu, Zhiyao & Kong, Xiangfei & Fan, Man, 2025. "Modified predicted mean vote models for human thermal comfort: An ASHRAE database-based evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    2. Barone, G. & Buonomano, A. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Russo, G., 2023. "A new thermal comfort model based on physiological parameters for the smart design and control of energy-efficient HVAC systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    3. Yu, Ying & Xiang, Tianhui & Wang, Di & Yang, Liu, 2024. "Optimization control strategy for mixed-mode buildings based on thermal comfort model: A case study of office buildings," Applied Energy, Elsevier, vol. 358(C).
    4. Balali, Amirhossein & Yunusa-Kaltungo, Akilu, 2025. "Selection of passive energy consumption optimisation strategies for buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    5. Sun, Hongli & Duan, Mengfan & Yang, Zixu & Ding, Pei & Wu, Yifan & Lin, Borong, 2023. "Evaluation of the intermittent performance of heating terminals based on exergy analysis: Discriminate the impacts of heat and electricity input," Applied Energy, Elsevier, vol. 346(C).
    6. Prek, Matjaž & Butala, Vincenc, 2017. "Comparison between Fanger's thermal comfort model and human exergy loss," Energy, Elsevier, vol. 138(C), pages 228-237.
    7. Ma, Xiaoli & Zeng, Cheng & Zhu, Zishang & Zhao, Xudong & Xiao, Xin & Akhlaghi, Yousef Golizadeh & Shittu, Samson, 2023. "Real life test of a novel super performance dew point cooling system in operational live data centre," Applied Energy, Elsevier, vol. 348(C).
    8. Wei, Wei & Wu, Bo & Guo, Yang & Hu, Yunhao & Liao, Yihui & Wu, Chunmao & Zhang, Qinghong & Li, Yaogang & Chen, Jianhui & Hou, Chengyi & Wang, Hongzhi, 2023. "A multimodal cooling garment for personal thermal comfort management," Applied Energy, Elsevier, vol. 352(C).
    9. Zhang, Sheng & Cheng, Yong & Fang, Zhaosong & Huan, Chao & Lin, Zhang, 2017. "Optimization of room air temperature in stratum-ventilated rooms for both thermal comfort and energy saving," Applied Energy, Elsevier, vol. 204(C), pages 420-431.
    10. Prek, Matjaz, 2006. "Thermodynamical analysis of human thermal comfort," Energy, Elsevier, vol. 31(5), pages 732-743.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Hongshan & Luo, Yongqiang & Meggers, Forrest & Simonetti, Marco, 2019. "Human body exergy consumption models’ evaluation and their sensitivities towards different environmental conditions," Energy, Elsevier, vol. 183(C), pages 1075-1088.
    2. Ribeiro, Thatiana Jessica da Silva & Mady, Carlos Eduardo Keutenedjian, 2022. "Comparison among exergy analysis methods applied to a human body thermal model," Energy, Elsevier, vol. 239(PE).
    3. Zhang, Sheng & Lin, Zhang & Ai, Zhengtao & Huan, Chao & Cheng, Yong & Wang, Fenghao, 2019. "Multi-criteria performance optimization for operation of stratum ventilation under heating mode," Applied Energy, Elsevier, vol. 239(C), pages 969-980.
    4. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    5. Zhang, Ce & Hou, Beiran & Li, Minxia & Dang, Chaobin & Chen, Xun & Li, Xiuming & Han, Zongwei, 2025. "Feasibility analysis of multi-mode data center liquid cooling system integrated with Carnot battery energy storage module," Energy, Elsevier, vol. 320(C).
    6. Lee, Minjung & Ham, Jeonggyun & Lee, Jeong-Won & Cho, Honghyun, 2023. "Analysis of thermal comfort, energy consumption, and CO2 reduction of indoor space according to the type of local heating under winter rest conditions," Energy, Elsevier, vol. 268(C).
    7. Ucar, Aynur, 2010. "Thermoeconomic analysis method for optimization of insulation thickness for the four different climatic regions of Turkey," Energy, Elsevier, vol. 35(4), pages 1854-1864.
    8. Henriques, Izabela Batista & Mady, Carlos Eduardo Keutenedjian & de Oliveira Junior, Silvio, 2016. "Exergy model of the human heart," Energy, Elsevier, vol. 117(P2), pages 612-619.
    9. Wang, Zhe & Cao, Menglong & Tang, Haobo & Ji, Yulong & Han, Fenghui, 2024. "A global heat flow topology for revealing the synergistic effects of heat transfer and thermal power conversion in large scale systems: Methodology and case study," Energy, Elsevier, vol. 290(C).
    10. Haider Latif & Samira Rahnama & Alessandro Maccarini & Goran Hultmark & Peter V. Nielsen & Alireza Afshari, 2022. "Precision Ventilation in an Open-Plan Office: A New Application of Active Chilled Beam (ACB) with a JetCone Feature," Sustainability, MDPI, vol. 14(7), pages 1-17, April.
    11. Chi, Fang'ai & Xu, Liming & Pan, Jiajie & Wang, Ruonan & Tao, Yekang & Guo, Yuang & Peng, Changhai, 2020. "Prediction of the total day-round thermal load for residential buildings at various scales based on weather forecast data," Applied Energy, Elsevier, vol. 280(C).
    12. Fong, K.F. & Lee, C.K. & Lin, Z., 2019. "Investigation on effect of indoor air distribution strategy on solar air-conditioning systems," Renewable Energy, Elsevier, vol. 131(C), pages 413-421.
    13. Keutenedjian Mady, Carlos Eduardo & Silva Ferreira, Maurício & Itizo Yanagihara, Jurandir & Hilário Nascimento Saldiva, Paulo & de Oliveira Junior, Silvio, 2012. "Modeling the exergy behavior of human body," Energy, Elsevier, vol. 45(1), pages 546-553.
    14. Couraud, Benoit & Andoni, Merlinda & Robu, Valentin & Norbu, Sonam & Chen, Si & Flynn, David, 2023. "Responsive FLEXibility: A smart local energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    15. Junqi Wang & Rundong Liu & Linfeng Zhang & Hussain Syed ASAD & Erlin Meng, 2019. "Triggering Optimal Control of Air Conditioning Systems by Event-Driven Mechanism: Comparing Direct and Indirect Approaches," Energies, MDPI, vol. 12(20), pages 1-20, October.
    16. Chaudhuri, Tanaya & Soh, Yeng Chai & Li, Hua & Xie, Lihua, 2019. "A feedforward neural network based indoor-climate control framework for thermal comfort and energy saving in buildings," Applied Energy, Elsevier, vol. 248(C), pages 44-53.
    17. Babak Farham & Luis Baltazar, 2024. "A Review of Smart Materials in 4D Printing for Hygrothermal Rehabilitation: Innovative Insights for Sustainable Building Stock Management," Sustainability, MDPI, vol. 16(10), pages 1-17, May.
    18. Henriques, Izabela Batista & Mady, Carlos Eduardo Keutenedjian & de Oliveira Junior, Silvio, 2017. "Assessment of thermal comfort conditions during physical exercise by means of exergy analysis," Energy, Elsevier, vol. 128(C), pages 609-617.
    19. Wu, Bingjie & Cai, Wenjian & Chen, Haoran, 2021. "A model-based multi-objective optimization of energy consumption and thermal comfort for active chilled beam systems," Applied Energy, Elsevier, vol. 287(C).
    20. Homod, Raad Z., 2014. "Assessment regarding energy saving and decoupling for different AHU (air handling unit) and control strategies in the hot-humid climatic region of Iraq," Energy, Elsevier, vol. 74(C), pages 762-774.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.