IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v346y2023ics0306261923006955.html
   My bibliography  Save this article

Evaluation of the intermittent performance of heating terminals based on exergy analysis: Discriminate the impacts of heat and electricity input

Author

Listed:
  • Sun, Hongli
  • Duan, Mengfan
  • Yang, Zixu
  • Ding, Pei
  • Wu, Yifan
  • Lin, Borong

Abstract

Intermittent space heating is widely recommended for building energy conservation. Although various heating terminals have been developed, the performance improvement for intermittent heating is still worth evaluating to maximize the energy-saving potential. Currently, energy-based and entransy-based methods are commonly applied for performance analysis, but these methods cannot reflect the comprehensive utilization efficiency of various energy forms. Therefore, this work conducts a discrimination study on the intermittent energy utilization of different heating terminals based on an exergy-based evaluation method. Specifically, this study analyzes the intermittent exergy flow performance of the “heating source-terminal-indoor environment” process. Moreover, we compare how various energy forms impact performance improvement aiming to recognize the potential of different optimization strategies from the aspect of heat and electricity exergy. Furthermore, the holistic performance of heating terminals under different heating source plants is evaluated to support practical applications. The experimental results suggest that the convective terminals attained the best intermittent performance and that the exergy efficiency of the fan coil is the highest (32.9%), with a greater improvement achieved by raising the fan power and connecting the fan coil to the heat pump system. This study provides a novel aspect of analyzing heating performance and optimization path of heating systems.

Suggested Citation

  • Sun, Hongli & Duan, Mengfan & Yang, Zixu & Ding, Pei & Wu, Yifan & Lin, Borong, 2023. "Evaluation of the intermittent performance of heating terminals based on exergy analysis: Discriminate the impacts of heat and electricity input," Applied Energy, Elsevier, vol. 346(C).
  • Handle: RePEc:eee:appene:v:346:y:2023:i:c:s0306261923006955
    DOI: 10.1016/j.apenergy.2023.121331
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923006955
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121331?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sovacool, Benjamin K. & Cabeza, Luisa F. & Pisello, Anna Laura & Colladon, Andrea Fronzetti & Larijani, Hatef Madani & Dawoud, Belal & Martiskainen, Mari, 2021. "Decarbonizing household heating: Reviewing demographics, geography and low-carbon practices and preferences in five European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    2. Yang, Zixu & Sun, Hongli & Wang, Baolong & Xiao, Hansong & Dong, Xian & Shi, Wenxing & Lin, Borong, 2022. "Experimental investigation on indoor environment and energy performance of convective terminals," Energy, Elsevier, vol. 251(C).
    3. Ahn, Byung-Cheon & Song, Jae-Yeob, 2010. "Control characteristics and heating performance analysis of automatic thermostatic valves for radiant slab heating system in residential apartments," Energy, Elsevier, vol. 35(4), pages 1615-1624.
    4. Menberg, Kathrin & Heo, Yeonsook & Choi, Wonjun & Ooka, Ryozo & Choudhary, Ruchi & Shukuya, Masanori, 2017. "Exergy analysis of a hybrid ground-source heat pump system," Applied Energy, Elsevier, vol. 204(C), pages 31-46.
    5. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
    6. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
    7. Shao, Suola & Zhang, Huan & You, Shijun & Zheng, Wandong & Jiang, Lingfei, 2019. "Thermal performance analysis of a new refrigerant-heated radiator coupled with air-source heat pump heating system," Applied Energy, Elsevier, vol. 247(C), pages 78-88.
    8. Sun, Hongli & Duan, Mengfan & Wu, Yifan & Lin, Borong & Yang, Zixu & Zhao, Haitian, 2021. "Thermal performance investigation of a novel heating terminal integrated with flat heat pipe and heat transfer enhancement," Energy, Elsevier, vol. 236(C).
    9. Kazanci, Ongun B. & Shukuya, Masanori, 2022. "A theoretical study of the effects of different heating loads on the exergy performance of water-based and air-based space heating systems in buildings," Energy, Elsevier, vol. 238(PC).
    10. Shao, Suola & Zhang, Huan & Fan, Xianwang & You, Shijun & Wang, Yaran & Wei, Shen, 2021. "Thermodynamic and economic analysis of the air source heat pump system with direct-condensation radiant heating panel," Energy, Elsevier, vol. 225(C).
    11. Hu, Shan & Yan, Da & Cui, Ying & Guo, Siyue, 2016. "Urban residential heating in hot summer and cold winter zones of China—Status, modeling, and scenarios to 2030," Energy Policy, Elsevier, vol. 92(C), pages 158-170.
    12. Kayaci, Nurullah, 2020. "Energy and exergy analysis and thermo-economic optimization of the ground source heat pump integrated with radiant wall panel and fan-coil unit with floor heating or radiator," Renewable Energy, Elsevier, vol. 160(C), pages 333-349.
    13. He, Yueer & Liu, Meng & Kvan, Thomas & Yan, Lu, 2019. "A quantity-quality-based optimization method for indoor thermal environment design," Energy, Elsevier, vol. 170(C), pages 1261-1278.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Babak Farham & Luis Baltazar, 2024. "A Review of Smart Materials in 4D Printing for Hygrothermal Rehabilitation: Innovative Insights for Sustainable Building Stock Management," Sustainability, MDPI, vol. 16(10), pages 1-17, May.
    2. Wang, Zhe & Cao, Menglong & Tang, Haobo & Ji, Yulong & Han, Fenghui, 2024. "A global heat flow topology for revealing the synergistic effects of heat transfer and thermal power conversion in large scale systems: Methodology and case study," Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    2. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    3. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    4. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
    5. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    6. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    7. Els van der Roest & Stijn Beernink & Niels Hartog & Jan Peter van der Hoek & Martin Bloemendal, 2021. "Towards Sustainable Heat Supply with Decentralized Multi-Energy Systems by Integration of Subsurface Seasonal Heat Storage," Energies, MDPI, vol. 14(23), pages 1-31, November.
    8. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    9. Hou, Hui & Xu, Tao & Wu, Xixiu & Wang, Huan & Tang, Aihong & Chen, Yangyang, 2020. "Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system," Applied Energy, Elsevier, vol. 271(C).
    10. Els van der Roest & Theo Fens & Martin Bloemendal & Stijn Beernink & Jan Peter van der Hoek & Ad J. M. van Wijk, 2021. "The Impact of System Integration on System Costs of a Neighborhood Energy and Water System," Energies, MDPI, vol. 14(9), pages 1-33, May.
    11. Florin Iov & Mahmood Khatibi & Jan Dimon Bendtsen, 2020. "On the Participation of Power-To-Heat Assets in Frequency Regulation Markets—A Danish Case Study," Energies, MDPI, vol. 13(18), pages 1-22, September.
    12. Felten, Björn & Weber, Christoph, 2018. "The value(s) of flexible heat pumps – Assessment of technical and economic conditions," Applied Energy, Elsevier, vol. 228(C), pages 1292-1319.
    13. Schill, Wolf-Peter & Zerrahn, Alexander, 2020. "Flexible electricity use for heating in markets with renewable energy," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 266.
    14. Peter Klement & Tobias Brandt & Lucas Schmeling & Antonieta Alcorta de Bronstein & Steffen Wehkamp & Fernando Andres Penaherrera Vaca & Mathias Lanezki & Patrik Schönfeldt & Alexander Hill & Nemanja K, 2022. "Local Energy Markets in Action: Smart Integration of National Markets, Distributed Energy Resources and Incentivisation to Promote Citizen Participation," Energies, MDPI, vol. 15(8), pages 1-24, April.
    15. Hu, Sheng-Chun & Cheng, Jie & Wang, Wu-Ping & Zhu, Ya-Hong & Kang, Kang & Zhu, Ming-Qiang & Huang, Xiao-Hua, 2022. "Preparation and analysis of pyroligneous liquor, charcoal and gas from lacquer wood by carbonization method based on a biorefinery process," Energy, Elsevier, vol. 239(PA).
    16. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    17. Pietzcker, Robert C. & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," Applied Energy, Elsevier, vol. 293(C).
    18. Simon Hilpert, 2020. "Effects of Decentral Heat Pump Operation on Electricity Storage Requirements in Germany," Energies, MDPI, vol. 13(11), pages 1-19, June.
    19. Philip Tafarte & Annedore Kanngießer & Martin Dotzauer & Benedikt Meyer & Anna Grevé & Markus Millinger, 2020. "Interaction of Electrical Energy Storage, Flexible Bioenergy Plants and System-friendly Renewables in Wind- or Solar PV-dominated Regions," Energies, MDPI, vol. 13(5), pages 1-25, March.
    20. Miguel Gonzalez-Salazar & Thomas Langrock & Christoph Koch & Jana Spieß & Alexander Noack & Markus Witt & Michael Ritzau & Armin Michels, 2020. "Evaluation of Energy Transition Pathways to Phase out Coal for District Heating in Berlin," Energies, MDPI, vol. 13(23), pages 1-27, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:346:y:2023:i:c:s0306261923006955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.