IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v328y2025ics0360544225021863.html
   My bibliography  Save this article

Combustion and emission characteristics of an ammonia-hydrogen engine using hydrogen-nitrogen jet ignition

Author

Listed:
  • Sun, Qiyang
  • Qi, Yunliang
  • Lin, Zhelong
  • Liu, Yi
  • Zhu, Wuzhe
  • Wang, Zhi

Abstract

Ammonia is a promising carbon-free fuel for internal combustion engines, but its low reactivity poses significant ignition challenges. Hydrogen jet ignition has emerged as a potential solution. While using ammonia decomposition as a hydrogen source is safer and more practical than hydrogen cylinders, the ignition performance of its decomposition gas (a hydrogen-nitrogen mixture with a molar ratio of 3:1) remains poorly studied. This study investigated the performance of an ammonia-hydrogen engine using a hydrogen-nitrogen mixture with a molar ratio of 3:1 as the ignition gas for active jet ignition under two categories of injection strategy: varying injection times and durations. The results showed that, compared to pure hydrogen, the hydrogen-nitrogen mixture increases the density inside the jet chamber, resulting in an increase in jet flame penetration length and flame ignition area. Moderately reducing the hydrogen energy ratio (αH2) could reduce heat loss and improve indicated thermal efficiency (ITE). Additionally, slightly lean combustion could achieve better thermal efficiency. The maximum ITE of 44.2 % was obtained with an excess air ratio (λ) at 1.18 and αH2 = 1.1 %. Slightly lean burn improved ITE but too lean mixture led to unstable combustion. As λ increased, NOx emissions first increased and then decreased at the maximum ITE operating condition under the same injection strategy and αH2. Under αH2 = 3.5 % and λ = 1.0, the minimum NOx was measured at 2796 ppm. This study validates the ignition capability of ammonia decomposition products and proposes optimized combustion strategies for improving efficiency and reducing emissions.

Suggested Citation

  • Sun, Qiyang & Qi, Yunliang & Lin, Zhelong & Liu, Yi & Zhu, Wuzhe & Wang, Zhi, 2025. "Combustion and emission characteristics of an ammonia-hydrogen engine using hydrogen-nitrogen jet ignition," Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021863
    DOI: 10.1016/j.energy.2025.136544
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225021863
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136544?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Fei Ma & Lingyan Guo & Zhijie Li & Xiaoxiao Zeng & Zhencao Zheng & Wei Li & Feiyang Zhao & Wenbin Yu, 2023. "A Review of Current Advances in Ammonia Combustion from the Fundamentals to Applications in Internal Combustion Engines," Energies, MDPI, vol. 16(17), pages 1-20, August.
    2. Wang, Zhi & Qi, Yunliang & Sun, Qiyang & Lin, Zhelong & Xu, Xiaoting, 2024. "Ammonia combustion using hydrogen jet ignition (AHJI) in internal combustion engines," Energy, Elsevier, vol. 291(C).
    3. Zhang, Hao & Lei, Nuo & Wang, Zhi, 2024. "Ammonia-hydrogen propulsion system for carbon-free heavy-duty vehicles," Applied Energy, Elsevier, vol. 369(C).
    4. Liu, Shang & Lin, Zhelong & Qi, Yunliang & Wang, Zhi & Yang, Dongsheng & Lu, Guoxiang & Wang, Bo, 2024. "Combustion and emission characteristics of a spark ignition engine fueled with ammonia/gasoline and pure ammonia," Applied Energy, Elsevier, vol. 369(C).
    5. Ezzat, M.F & Dincer, I., 2018. "Development and assessment of a new hybrid vehicle with ammonia and hydrogen," Applied Energy, Elsevier, vol. 219(C), pages 226-239.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cinzia Tornatore & Paolo Sementa & Francesco Catapano, 2025. "Ammonia–Hydrogen Dual-Fuel Combustion: Strategies for Optimizing Performance and Reducing Emissions in Internal Combustion Engines," Energies, MDPI, vol. 18(12), pages 1-26, June.
    2. Edith Flora Eyisse & Ebrahim Nadimi & Dawei Wu, 2024. "Ammonia Combustion: Internal Combustion Engines and Gas Turbines," Energies, MDPI, vol. 18(1), pages 1-23, December.
    3. Lin, Zhelong & Liu, Shang & Sun, Qiyang & Qi, Yunliang & Wang, Zhi & Li, Jun, 2024. "Effect of injection and ignition strategy on an ammonia direct injection–Hydrogen jet ignition (ADI-HJI) engine," Energy, Elsevier, vol. 306(C).
    4. Lin, Zhelong & Liu, Yi & Chen, Qingchu & Sun, Qiyang & Zhu, Wuzhe & Qi, Yunliang & Wang, Zhi, 2025. "Experimental study on the combustion pattern in an ammonia engine using micro diesel ignition," Energy, Elsevier, vol. 320(C).
    5. Vikas Sharma & Angad Panesar & Guillaume de Sercey & Steven Begg, 2024. "A Review of Ammonia Combustion and Emissions Characteristics in Spark-Ignition Engines and Future Road Map," Energies, MDPI, vol. 18(1), pages 1-29, December.
    6. Bai, Fanlong & Zhao, Fuquan & Liu, Ming & Liu, Zongwei & Hao, Han & Reiner, David M., 2025. "Assessing the Viability of Renewable Hydrogen, Ammonia, and Methanol in Decarbonizing Heavy-duty Trucks," Applied Energy, Elsevier, vol. 383(C).
    7. Nie, Zexin & Huang, Yi & Lu, Ziwang & Tian, Guangyu & Liu, Xinhua, 2024. "Energy efficiency analysis of ammonia-fueled power systems for vehicles considering residual heat recovery," Energy, Elsevier, vol. 312(C).
    8. Al-Hamed, Khaled H.M. & Dincer, Ibrahim, 2021. "A novel ammonia solid oxide fuel cell-based powering system with on-board hydrogen production for clean locomotives," Energy, Elsevier, vol. 220(C).
    9. Ezzat, M.F. & Dincer, I., 2019. "Development and exergetic assessment of a new hybrid vehicle incorporating gas turbine as powering option," Energy, Elsevier, vol. 170(C), pages 112-119.
    10. Elbanna, Ahmed Mohammed & Cheng, Xiaobei, 2024. "The role of charge reactivity in ammonia/diesel dual fuel combustion in compression ignition engine," Energy, Elsevier, vol. 306(C).
    11. Wei, Wenwen & Li, Gesheng & Zhang, Zunhua & Long, Yanxiang & Zhang, Hanyuyang & Huang, Yong & Zhou, Mengni & Wei, Yi, 2023. "Effects of ammonia addition on the performance and emissions for a spark-ignition marine natural gas engine," Energy, Elsevier, vol. 272(C).
    12. Zhang, Hao & Lei, Nuo & Chen, Boli & Li, Bingbing & Li, Rulong & Wang, Zhi, 2024. "Modeling and control system optimization for electrified vehicles: A data-driven approach," Energy, Elsevier, vol. 310(C).
    13. Lv, Chengkun & Huang, Qian & Lan, Zhu & Chang, Juntao & Yu, Daren, 2023. "Parametric optimization and exergy analysis of a high mach number aeroengine with an ammonia mass injection pre-compressor cooling cycle," Energy, Elsevier, vol. 282(C).
    14. Chenghao Lyu & Nuo Lei & Chaoyi Chen & Hao Zhang, 2025. "A Hierarchical Evolutionary Search Framework with Manifold Learning for Powertrain Optimization of Flying Vehicles," Energies, MDPI, vol. 18(13), pages 1-20, June.
    15. Joao L. Afonso & Luiz A. Lisboa Cardoso & Delfim Pedrosa & Tiago J. C. Sousa & Luis Machado & Mohamed Tanta & Vitor Monteiro, 2020. "A Review on Power Electronics Technologies for Electric Mobility," Energies, MDPI, vol. 13(23), pages 1-61, December.
    16. Liang, He & Yan, Xingqing & Shi, Enhua & Wang, Xinfei & Qi, Chang & Ding, Jianfei & Zhang, Lianzhuo & Chen, Lei & Lv, Xianshu & Yu, Jianliang, 2024. "Effect of hydrogen blending on ammonia/air explosion characteristics under wide equivalence ratio," Energy, Elsevier, vol. 297(C).
    17. Zhang, Hao & Lei, Nuo & Wang, Zhi, 2024. "Ammonia-hydrogen propulsion system for carbon-free heavy-duty vehicles," Applied Energy, Elsevier, vol. 369(C).
    18. Meng, Xiangyu & Zhu, Wenchao & Yin, Shuo & Tian, Jiangping & Cao, Jianlin & Long, Wuqiang & Bi, Mingshu, 2025. "Study for improving ammonia combustion and emissions using different hydrogen addition strategies in pre-chamber turbulent jet ignition mode," Energy, Elsevier, vol. 323(C).
    19. Du, Jiakun & Chen, Hong & Li, Yuhuai & Qi, Hongzhong & Wu, Weilong & Xie, Fangxi & Li, Yong, 2025. "Exploring the influence of mixture formation methods on combustion and emissions of hydrogen/ammonia dual-fuel engines at part loads and excess air coefficients," Energy, Elsevier, vol. 315(C).
    20. Wu, Yue & Liu, Long & Wang, Lifeng & Wu, Jie, 2025. "Investigation of performance and emission characteristics in natural gas dual fuel marine engines with a novel Burned Zone Ammonia Combustion strategy," Energy, Elsevier, vol. 324(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.