IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v315y2025ics0360544225000994.html
   My bibliography  Save this article

Exploring the influence of mixture formation methods on combustion and emissions of hydrogen/ammonia dual-fuel engines at part loads and excess air coefficients

Author

Listed:
  • Du, Jiakun
  • Chen, Hong
  • Li, Yuhuai
  • Qi, Hongzhong
  • Wu, Weilong
  • Xie, Fangxi
  • Li, Yong

Abstract

This study investigates hydrogen and ammonia as promising alternative fuels for decarbonizing internal combustion engines during the energy transition. The research addresses challenges in combustion efficiency and emission performance of hydrogen/ammonia dual-fuel engines, focusing on mixture distribution deterioration. By examining the effects of direct hydrogen injection timing, three mixture formation methods are analyzed: homogeneous charge (HC), mild stratified charge (MSC), and severe stratified charge (SSC). Experimental results demonstrate the MSC method achieved the highest peak cylinder pressure and the most concentrated heat release. In contrast, the SSC method exhibited significant instability, with a 1.85 % higher coefficient of variation of indicated mean effective pressure (COVIMEP) at IMEP = 4 bar and λ = 1.4 compared to MSC. In terms of emissions, SSC resulted in elevated NH3 emissions, while HC and MSC produced increased NOx emissions. Energy analysis revealed that the HC and SSC methods reduced exhaust loss power (PEL) and heat loss power (PHL), respectively. However, MSC achieved the highest effective power (37.4 %) at IMEP = 7 bar and λ = 1.4, due to the lowest combined PEL and PHL. These findings highlight the potential of MSC as a superior strategy for improving combustion stability and efficiency in hydrogen/ammonia dual-fuel engines.

Suggested Citation

  • Du, Jiakun & Chen, Hong & Li, Yuhuai & Qi, Hongzhong & Wu, Weilong & Xie, Fangxi & Li, Yong, 2025. "Exploring the influence of mixture formation methods on combustion and emissions of hydrogen/ammonia dual-fuel engines at part loads and excess air coefficients," Energy, Elsevier, vol. 315(C).
  • Handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544225000994
    DOI: 10.1016/j.energy.2025.134457
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225000994
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134457?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Shuofeng & Sun, Yu & Yang, Jinxin & Wang, Huaiyu, 2024. "Effect of excess air ratio and ignition timing on the combustion and emission characteristics of the ammonia-hydrogen Wankel rotary engine," Energy, Elsevier, vol. 302(C).
    2. Wang, Zhi & Qi, Yunliang & Sun, Qiyang & Lin, Zhelong & Xu, Xiaoting, 2024. "Ammonia combustion using hydrogen jet ignition (AHJI) in internal combustion engines," Energy, Elsevier, vol. 291(C).
    3. Chen, Fujun & Wang, Bowen & Ni, Meng & Gong, Zhichao & Jiao, Kui, 2024. "Online energy management strategy for ammonia-hydrogen hybrid electric vehicles harnessing deep reinforcement learning," Energy, Elsevier, vol. 301(C).
    4. Wang, Binbin & Wang, Hechun & Duan, Baoyin & Yang, Chuanlei & Hu, Deng & Wang, Yinyan, 2023. "Effect of ammonia/hydrogen mixture ratio on engine combustion and emission performance at different inlet temperatures," Energy, Elsevier, vol. 272(C).
    5. Lin, Zhelong & Liu, Shang & Sun, Qiyang & Qi, Yunliang & Wang, Zhi & Li, Jun, 2024. "Effect of injection and ignition strategy on an ammonia direct injection–Hydrogen jet ignition (ADI-HJI) engine," Energy, Elsevier, vol. 306(C).
    6. Liang, Yuwei & Wang, Zhongjun & Dong, Dongsheng & Wei, Wenwen & Zhang, Hanyuyang & Li, Gesheng & Zhang, Zunhua, 2024. "Effects of hydrogen volume fraction, air fuel ratio, and compression ratio on combustion and emission characteristics of an SI ammonia-hydrogen engine," Energy, Elsevier, vol. 308(C).
    7. Liu, Shang & Lin, Zhelong & Zhang, Hao & Lei, Nuo & Qi, Yunliang & Wang, Zhi, 2023. "Impact of ammonia addition on knock resistance and combustion performance in a gasoline engine with high compression ratio," Energy, Elsevier, vol. 262(PA).
    8. Dong, Pengbo & Chen, Shihao & Zhang, Lenan & Zhang, Zhenxian & Long, Wuqiang & Wang, Qingyang & Chen, Weize, 2024. "Ammonia diffusion combustion and emission formation characteristics in a single cylinder two stroke engine," Energy, Elsevier, vol. 311(C).
    9. Wang, Ying & Xiao, Fan & Zhao, Yuwei & Li, Dongchang & Lei, Xiong, 2015. "Study on cycle-by-cycle variations in a diesel engine with dimethyl ether as port premixing fuel," Applied Energy, Elsevier, vol. 143(C), pages 58-70.
    10. Wang, Yaodong & Su, Yan & Li, Xiaoping & Wang, Yongzhen & Yang, Tong & Wang, Bo & Sun, Yao, 2024. "Experimental study for the effect of spark ignition on methanol/PODE dual fuel combustion under medium and low loads," Energy, Elsevier, vol. 301(C).
    11. Shen, Bo & Su, Yan & Yu, Hao & Zhang, Yulin & Lang, Maochun & Yang, He, 2023. "Experimental study on the effect of injection strategies on the combustion and emissions characteristic of gasoline/methanol dual-fuel turbocharged engine under high load," Energy, Elsevier, vol. 282(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Zhelong & Liu, Yi & Chen, Qingchu & Sun, Qiyang & Zhu, Wuzhe & Qi, Yunliang & Wang, Zhi, 2025. "Experimental study on the combustion pattern in an ammonia engine using micro diesel ignition," Energy, Elsevier, vol. 320(C).
    2. Ji, Changwei & Deng, Yutao & Yang, Jinxin & Zambalov, Sergey & Kasaev, Dmitry, 2025. "Numerical study on the effects of spark plug position and ignition timing on the performance of hydrogen direct-injection oval rotary engine under different excess air ratio conditions," Energy, Elsevier, vol. 314(C).
    3. Lin, Zhelong & Liu, Shang & Sun, Qiyang & Qi, Yunliang & Wang, Zhi & Li, Jun, 2024. "Effect of injection and ignition strategy on an ammonia direct injection–Hydrogen jet ignition (ADI-HJI) engine," Energy, Elsevier, vol. 306(C).
    4. Nie, Zexin & Huang, Yi & Lu, Ziwang & Tian, Guangyu & Liu, Xinhua, 2024. "Energy efficiency analysis of ammonia-fueled power systems for vehicles considering residual heat recovery," Energy, Elsevier, vol. 312(C).
    5. Liu, Zundi & Bin, Shiyu & Chen, Siyu & Jiang, Jianbai & Zhang, Yi & Shi, Xiaoxiang & Li, Wei & Zhang, Huangwei & Li, Yuyang, 2025. "Insights into combustion and emission characteristics of ammonia co-firing with hydrogen-rich gas for gas turbine applications," Energy, Elsevier, vol. 324(C).
    6. Elbanna, Ahmed Mohammed & Cheng, Xiaobei, 2024. "The role of charge reactivity in ammonia/diesel dual fuel combustion in compression ignition engine," Energy, Elsevier, vol. 306(C).
    7. Wei, Wenwen & Li, Gesheng & Zhang, Zunhua & Long, Yanxiang & Zhang, Hanyuyang & Huang, Yong & Zhou, Mengni & Wei, Yi, 2023. "Effects of ammonia addition on the performance and emissions for a spark-ignition marine natural gas engine," Energy, Elsevier, vol. 272(C).
    8. Lin, Zhelong & Liu, Shang & Qi, Yunliang & Chen, Qingchu & Wang, Zhi, 2024. "Experimental study on the performance of a high compression ratio SI engine using alcohol/ammonia fuel," Energy, Elsevier, vol. 289(C).
    9. Wang, Shuofeng & Sun, Yu & Yang, Jinxin & Wang, Huaiyu, 2024. "Effect of excess air ratio and ignition timing on the combustion and emission characteristics of the ammonia-hydrogen Wankel rotary engine," Energy, Elsevier, vol. 302(C).
    10. Fan Wang & Yina Hong & Xiaohuan Zhao, 2025. "Research and Comparative Analysis of Energy Management Strategies for Hybrid Electric Vehicles: A Review," Energies, MDPI, vol. 18(11), pages 1-28, May.
    11. Liu, Shang & Lin, Zhelong & Qi, Yunliang & Wang, Zhi & Yang, Dongsheng & Lu, Guoxiang & Wang, Bo, 2024. "Combustion and emission characteristics of a spark ignition engine fueled with ammonia/gasoline and pure ammonia," Applied Energy, Elsevier, vol. 369(C).
    12. Yanuandri Putrasari & Ocktaeck Lim, 2019. "A Review of Gasoline Compression Ignition: A Promising Technology Potentially Fueled with Mixtures of Gasoline and Biodiesel to Meet Future Engine Efficiency and Emission Targets," Energies, MDPI, vol. 12(2), pages 1-27, January.
    13. Zhang, Hao & Lei, Nuo & Wang, Zhi, 2024. "Ammonia-hydrogen propulsion system for carbon-free heavy-duty vehicles," Applied Energy, Elsevier, vol. 369(C).
    14. Wang, Qingyang & Long, Wuqiang & Hao, Yanan & Wang, Yongjian & Tian, Hua & Dong, Pengbo & Zhang, Zhenxian & Lu, Mingfei, 2025. "Combustion and emission characteristics of an ammonia engine applying hydrogen turbulent jet ignition and ammonia direct-injection," Energy, Elsevier, vol. 322(C).
    15. Meng, Xiangyu & Zhu, Wenchao & Yin, Shuo & Tian, Jiangping & Cao, Jianlin & Long, Wuqiang & Bi, Mingshu, 2025. "Study for improving ammonia combustion and emissions using different hydrogen addition strategies in pre-chamber turbulent jet ignition mode," Energy, Elsevier, vol. 323(C).
    16. Xu, Zidan & Shen, Tielong, 2020. "Symbol-sequence statistics-based cylinder-to-cylinder variation control in spark-ignition engines," Applied Energy, Elsevier, vol. 261(C).
    17. An, Zhenhua & Wang, Ruixiang & Mao, Runze & Xing, Jiangkuan & Zhang, Meng & Chen, Zhi X. & Kurose, Ryoichi, 2025. "Flame stability and emission characteristics of oxygen-enriched ammonia combustion in a swirl combustor," Energy, Elsevier, vol. 324(C).
    18. Meng, Xianglong & Xie, Fangxi & Liu, Yu & Yu, Zhenbo & Jiang, Yunfeng & Wang, Zhaoyu & Wang, Xiangyang & Jin, Zhaohui, 2025. "Effects of ammonia addition and variable valve timing on knocking and performance of ethanol pre-chamber engine with high compression ratio," Energy, Elsevier, vol. 327(C).
    19. Liang, Zhendong & Xie, Fangxi & Li, Qian & Su, Yan & Wang, Zhongshu & Dou, Huili & Li, Xiaoping, 2024. "Co-optimization and prediction of high-efficiency combustion and zero-carbon emission at part load in the hydrogen direct injection engine based on VVT, split injection and ANN," Energy, Elsevier, vol. 308(C).
    20. Wu, Yue & Liu, Long & Wang, Lifeng & Wu, Jie, 2025. "Investigation of performance and emission characteristics in natural gas dual fuel marine engines with a novel Burned Zone Ammonia Combustion strategy," Energy, Elsevier, vol. 324(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544225000994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.