IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v324y2025ics0360544225016093.html
   My bibliography  Save this article

Insights into combustion and emission characteristics of ammonia co-firing with hydrogen-rich gas for gas turbine applications

Author

Listed:
  • Liu, Zundi
  • Bin, Shiyu
  • Chen, Siyu
  • Jiang, Jianbai
  • Zhang, Yi
  • Shi, Xiaoxiang
  • Li, Wei
  • Zhang, Huangwei
  • Li, Yuyang

Abstract

In this work, hydrogen-rich gas (HRG), a byproduct generated in various chemical engineering processes, is first utilized to enhance ammonia (NH3) swirl flames. Swirl combustion and emission characteristics of ammonia/HRG/air mixtures are explored and kinetic modelling is performed to reveal the controlling effects. Results indicate that increasing the HRG content can substantially enhance the combustion intensity and flame stability of ammonia/HRG/air swirl flames. This approach also helps prevent flashback, a common issue in pure HRG combustion, and achieves a complementary effect in reactivity. The chemical effect is dominant in enhancing flame stability, while the thermal effect also contributes significantly. With the HRG content increasing, NO and NO2 emissions increase, while N2O, NH3 and CH4 emissions decrease. Chemical reactor network simulation shows that higher HRG content shifts the product equilibrium from N2 to NO, driven primarily by increased O, H and OH radicals, showing a trade-off between combustion enhancement and emission control. Despite the relatively high pollutant emissions in the primary stage, low NOx emissions (<200 ppm) can still be achieved with high combustion efficiency under axial staged combustion, indicating direct applicability in gas turbines through selective catalytic reduction technique.

Suggested Citation

  • Liu, Zundi & Bin, Shiyu & Chen, Siyu & Jiang, Jianbai & Zhang, Yi & Shi, Xiaoxiang & Li, Wei & Zhang, Huangwei & Li, Yuyang, 2025. "Insights into combustion and emission characteristics of ammonia co-firing with hydrogen-rich gas for gas turbine applications," Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225016093
    DOI: 10.1016/j.energy.2025.135967
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225016093
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135967?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Yazhou & Nazir, Shareq Mohd & Zhang, Kai & Duwig, Christophe, 2023. "Waste heat recovery optimization in ammonia-based gas turbine applications," Energy, Elsevier, vol. 280(C).
    2. Wang, Binbin & Wang, Hechun & Duan, Baoyin & Yang, Chuanlei & Hu, Deng & Wang, Yinyan, 2023. "Effect of ammonia/hydrogen mixture ratio on engine combustion and emission performance at different inlet temperatures," Energy, Elsevier, vol. 272(C).
    3. Xiao, Hua & Valera-Medina, Agustin & Bowen, Philip J, 2017. "Study on premixed combustion characteristics of co-firing ammonia/methane fuels," Energy, Elsevier, vol. 140(P1), pages 125-135.
    4. Park, Yeseul & Choi, Minsung & Choi, Gyungmin, 2023. "Thermodynamic performance study of large-scale industrial gas turbine with methane/ammonia/hydrogen blended fuels," Energy, Elsevier, vol. 282(C).
    5. Mashruk, Syed & Kovaleva, Marina & Alnasif, Ali & Chong, Cheng Tung & Hayakawa, Akihiro & Okafor, Ekenechukwu C. & Valera-Medina, Agustin, 2022. "Nitrogen oxide emissions analyses in ammonia/hydrogen/air premixed swirling flames," Energy, Elsevier, vol. 260(C).
    6. Wang, Siqi & Chong, Cheng Tung & Xie, Tian & Józsa, Viktor & Ng, Jo-Han, 2023. "Ammonia/methane dual-fuel injection and Co-firing strategy in a swirl flame combustor for pollutant emissions control," Energy, Elsevier, vol. 281(C).
    7. Skabelund, Brent B. & Stechel, Ellen B. & Milcarek, Ryan J., 2023. "Thermodynamic analysis of a gas turbine utilizing ternary CH4/H2/NH3 fuel blends," Energy, Elsevier, vol. 282(C).
    8. Tu, Yaojie & Zhang, Haiyang & Guiberti, Thibault F. & Avila Jimenez, Cristian D. & Liu, Hao & Roberts, William L., 2024. "Experimental and numerical study of combustion and emission characteristics of NH3/CH4/air premixed swirling flames with air-staging in a model combustor," Applied Energy, Elsevier, vol. 367(C).
    9. Ju, Rongyuan & Wang, Jinhua & Zhang, Meng & Mu, Haibao & Zhang, Guanjun & Yu, Jinlu & Huang, Zuohua, 2023. "Stability and emission characteristics of ammonia/air premixed swirling flames with rotating gliding arc discharge plasma," Energy, Elsevier, vol. 277(C).
    10. Karyeyen, Serhat & Feser, Joseph S. & Gupta, Ashwani K., 2019. "Swirl assisted distributed combustion behavior using hydrogen-rich gaseous fuels," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. Pashchenko, Dmitry, 2024. "Ammonia fired gas turbines: Recent advances and future perspectives," Energy, Elsevier, vol. 290(C).
    12. Li, Jun & Huang, Hongyu & Kobayashi, Noriyuki & He, Zhaohong & Osaka, Yugo & Zeng, Tao, 2015. "Numerical study on effect of oxygen content in combustion air on ammonia combustion," Energy, Elsevier, vol. 93(P2), pages 2053-2068.
    13. Pan, Suyang & Ma, Jiliang & Chen, Xiaoping & Liu, Daoyin & Liang, Cai, 2023. "NH3/O2 premixed combustion in a single bubble of fluidized bed," Applied Energy, Elsevier, vol. 349(C).
    14. Syred, N. & Giles, A. & Lewis, J. & Abdulsada, M. & Valera Medina, A. & Marsh, R. & Bowen, P.J. & Griffiths, A.J., 2014. "Effect of inlet and outlet configurations on blow-off and flashback with premixed combustion for methane and a high hydrogen content fuel in a generic swirl burner," Applied Energy, Elsevier, vol. 116(C), pages 288-296.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Jinyoung & Kim, Donghyun & Park, Sungwoo, 2025. "Numerical investigation of the hydrogen addition effect on NO formation in ammonia/air premixed flames at elevated pressure using an improved reaction mechanism," Energy, Elsevier, vol. 327(C).
    2. Jinyi Hu & Yongbao Liu & Xing He & Jianfeng Zhao & Shaojun Xia, 2024. "Application of NH 3 Fuel in Power Equipment and Its Impact on NO x Emissions," Energies, MDPI, vol. 17(12), pages 1-39, June.
    3. Jowkar, Saeed & Zhang, Hengming & Shen, Xing, 2025. "Ammonia/syngas combustion in a premixed micro-gas turbine: LES-FGM investigation on flame dynamics, stability, and emission control," Energy, Elsevier, vol. 320(C).
    4. Cai, Tao & Zhao, Dan & Chan, Siew Hwa & Shahsavari, Mohammad, 2022. "Tailoring reduced mechanisms for predicting flame propagation and ignition characteristics in ammonia and ammonia/hydrogen mixtures," Energy, Elsevier, vol. 260(C).
    5. Joanna Jójka & Rafał Ślefarski, 2021. "Emission Characteristics for Swirl Methane–Air Premixed Flames with Ammonia Addition," Energies, MDPI, vol. 14(3), pages 1-19, January.
    6. Muhammad Aziz & Agung Tri Wijayanta & Asep Bayu Dani Nandiyanto, 2020. "Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization," Energies, MDPI, vol. 13(12), pages 1-25, June.
    7. Li, Yunlong & Feng, Lai & Chen, Wei, 2024. "Chemical effect of H2 on NH3 combustion in an O2 environment via molecular dynamics simulations," Energy, Elsevier, vol. 308(C).
    8. Siqi Wang & Cheng Tung Chong & Soroush Sheykhbaglou & Jo-Han Ng & Bo Tian & Agustin Valera-Medina, 2024. "Revealing the NO Formation Kinetics for NH 3 /CH 4 Blends Under Dual-Flame and Premixed Swirl Flame Configurations," Energies, MDPI, vol. 17(23), pages 1-25, December.
    9. An, Zhenhua & Wang, Ruixiang & Mao, Runze & Xing, Jiangkuan & Zhang, Meng & Chen, Zhi X. & Kurose, Ryoichi, 2025. "Flame stability and emission characteristics of oxygen-enriched ammonia combustion in a swirl combustor," Energy, Elsevier, vol. 324(C).
    10. Skabelund, Brent B. & Stechel, Ellen B. & Milcarek, Ryan J., 2023. "Thermodynamic analysis of a gas turbine utilizing ternary CH4/H2/NH3 fuel blends," Energy, Elsevier, vol. 282(C).
    11. Hookyung Lee & Min-Jung Lee, 2021. "Recent Advances in Ammonia Combustion Technology in Thermal Power Generation System for Carbon Emission Reduction," Energies, MDPI, vol. 14(18), pages 1-29, September.
    12. Yu, Changyou & Guo, Liang & Sun, Wanchen & Zhang, Hao & Cheng, Peng & Yan, Yuying & Zhu, Genan & Jiang, Mengqi & Guo, Yanan & Yue, Fei, 2024. "Experimental and chemical kinetic study on effects of H2-DME fusion addition on laminar premixed flame speed and flame instability for ammonia composite combustion," Energy, Elsevier, vol. 310(C).
    13. Ahmad, Azaria Haykal & Darmanto, Prihadi Setyo & Hariana, Hariana & Darmawan, Arif & Aziz, Muhammad & Juangsa, Firman Bagja, 2024. "Integration ammonia cracking process and co-firing of natural gas in combined cycle power plant: A thermodynamic analysis," Energy, Elsevier, vol. 304(C).
    14. Zhang, Yu & Zhang, Linyao & Li, Xincheng & Bai, Chenxi & Zhang, Wenda & Qiu, Penghua & Zhao, Yijun, 2025. "Numerical investigation and optimization of porous media burner for NH3/O2/H2O combustion," Energy, Elsevier, vol. 317(C).
    15. Wu, Fang-Hsien & Chen, Guan-Bang, 2020. "Numerical study of hydrogen peroxide enhancement of ammonia premixed flames," Energy, Elsevier, vol. 209(C).
    16. Kumar, Laveet & Sleiti, Ahmad K., 2024. "Systematic review on ammonia as a sustainable fuel for combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    17. Zhao, Xu & Ng, Jo-Han & Mong, Guo Ren & Mashruk, Syed & Lee, Chew Tin & Fang, Xueliang & Wong, Keng Yinn & Ooi, Jong Boon & Valera-Medina, Agustin & Chiong, Meng-Choung, 2024. "Thermochemical analysis of premixed ammonia/biogas flames in a model gas turbine swirl combustion system," Renewable Energy, Elsevier, vol. 236(C).
    18. Li, Gang & Wang, Jieming & Wang, Hu & Tang, Qinglong & Liu, Haifeng & Yao, Mingfa, 2024. "Experimental investigation on the regulation of methane addition for multi-stage combustion of lean ammonia/air mixtures using jet ignition," Energy, Elsevier, vol. 313(C).
    19. Chai, Wai Siong & Bao, Yulei & Jin, Pengfei & Tang, Guang & Zhou, Lei, 2021. "A review on ammonia, ammonia-hydrogen and ammonia-methane fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    20. Li, Jun & Huang, Hongyu & Deng, Lisheng & He, Zhaohong & Osaka, Yugo & Kobayashi, Noriyuki, 2019. "Effect of hydrogen addition on combustion and heat release characteristics of ammonia flame," Energy, Elsevier, vol. 175(C), pages 604-617.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225016093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.