IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v328y2025ics0360544225021115.html
   My bibliography  Save this article

ANN-based model predictive control for optimizing space cooling management

Author

Listed:
  • Aruta, Giuseppe
  • Ascione, Fabrizio
  • Bianco, Nicola
  • Iovane, Teresa
  • Mauro, Gerardo Maria

Abstract

This study integrates artificial neural networks into a simulation and optimization framework to implement model predictive control (MPC) for residential space cooling. Based on weather forecasts, the framework provides the optimal setpoint scheduling over a daily planning horizon to reduce energy consumption, costs, and occupant thermal discomfort. A multi-objective optimization approach is adopted, targeting the minimization of system operating costs and of a novel function, defined as comfort penalty, which quantifies potential occupant discomfort hours throughout the day. A genetic algorithm is employed for optimization, while feedforward neural networks are trained to replicate and predict the behavior of the building-plant system. The feedforward neural networks are trained to predict both indoor temperature and cooling loads, demonstrating promising accuracy when compared to building model outputs. Upon obtaining the Pareto front, the optimal solutions are compared with a typical summer control strategy. Results show potential savings of up to 49 % without compromising the other objective, or simultaneous improvements of both objectives, with reductions of 30 % in cooling costs and 27 % in comfort penalty (utopia criterion). These findings highlight that, when properly designed, metamodels can accurately predict building-plant dynamics and deliver reliable optimization results with minimal computational effort.

Suggested Citation

  • Aruta, Giuseppe & Ascione, Fabrizio & Bianco, Nicola & Iovane, Teresa & Mauro, Gerardo Maria, 2025. "ANN-based model predictive control for optimizing space cooling management," Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021115
    DOI: 10.1016/j.energy.2025.136469
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225021115
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136469?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2016. "Multi-stage and multi-objective optimization for energy retrofitting a developed hospital reference building: A new approach to assess cost-optimality," Applied Energy, Elsevier, vol. 174(C), pages 37-68.
    2. Ballarini, Ilaria & Corgnati, Stefano Paolo & Corrado, Vincenzo, 2014. "Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project," Energy Policy, Elsevier, vol. 68(C), pages 273-284.
    3. Finck, Christian & Li, Rongling & Zeiler, Wim, 2019. "Economic model predictive control for demand flexibility of a residential building," Energy, Elsevier, vol. 176(C), pages 365-379.
    4. Bianchini, Gianni & Casini, Marco & Pepe, Daniele & Vicino, Antonio & Zanvettor, Giovanni Gino, 2019. "An integrated model predictive control approach for optimal HVAC and energy storage operation in large-scale buildings," Applied Energy, Elsevier, vol. 240(C), pages 327-340.
    5. Coccia, Gianluca & Mugnini, Alice & Polonara, Fabio & Arteconi, Alessia, 2021. "Artificial-neural-network-based model predictive control to exploit energy flexibility in multi-energy systems comprising district cooling," Energy, Elsevier, vol. 222(C).
    6. Aoun, Nadine & Bavière, Roland & Vallée, Mathieu & Aurousseau, Antoine & Sandou, Guillaume, 2019. "Modelling and flexible predictive control of buildings space-heating demand in district heating systems," Energy, Elsevier, vol. 188(C).
    7. Reynolds, Jonathan & Rezgui, Yacine & Kwan, Alan & Piriou, Solène, 2018. "A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control," Energy, Elsevier, vol. 151(C), pages 729-739.
    8. Joe, Jaewan & Im, Piljae & Cui, Borui & Dong, Jin, 2023. "Model-based predictive control of multi-zone commercial building with a lumped building modelling approach," Energy, Elsevier, vol. 263(PA).
    9. Jiang, Ben & Li, Yu & Rezgui, Yacine & Zhang, Chengyu & Wang, Peng & Zhao, Tianyi, 2024. "Multi-source domain generalization deep neural network model for predicting energy consumption in multiple office buildings," Energy, Elsevier, vol. 299(C).
    10. Liu, Xiangfei & Ren, Mifeng & Yang, Zhile & Yan, Gaowei & Guo, Yuanjun & Cheng, Lan & Wu, Chengke, 2022. "A multi-step predictive deep reinforcement learning algorithm for HVAC control systems in smart buildings," Energy, Elsevier, vol. 259(C).
    11. Morovat, Navid & Athienitis, Andreas K. & Candanedo, José Agustín & Nouanegue, Hervé Frank, 2024. "Heuristic model predictive control implementation to activate energy flexibility in a fully electric school building," Energy, Elsevier, vol. 296(C).
    12. Koschwitz, D. & Frisch, J. & van Treeck, C., 2018. "Data-driven heating and cooling load predictions for non-residential buildings based on support vector machine regression and NARX Recurrent Neural Network: A comparative study on district scale," Energy, Elsevier, vol. 165(PA), pages 134-142.
    13. Mohan, Ritwik & Pachauri, Nikhil, 2025. "An ensemble model for the energy consumption prediction of residential buildings," Energy, Elsevier, vol. 314(C).
    14. Savadkoohi, Marjan & Macarulla, Marcel & Casals, Miquel, 2023. "Facilitating the implementation of neural network-based predictive control to optimize building heating operation," Energy, Elsevier, vol. 263(PB).
    15. Hou, Juan & Li, Haoran & Nord, Natasa, 2022. "Nonlinear model predictive control for the space heating system of a university building in Norway," Energy, Elsevier, vol. 253(C).
    16. Chen, Xiao & Cao, Benyi & Pouramini, Somayeh, 2023. "Energy cost and consumption reduction of an office building by Chaotic Satin Bowerbird Optimization Algorithm with model predictive control and artificial neural network: A case study," Energy, Elsevier, vol. 270(C).
    17. Nguyen, Anh-Tuan & Reiter, Sigrid & Rigo, Philippe, 2014. "A review on simulation-based optimization methods applied to building performance analysis," Applied Energy, Elsevier, vol. 113(C), pages 1043-1058.
    18. Afroz, Zakia & Shafiullah, GM & Urmee, Tania & Higgins, Gary, 2018. "Modeling techniques used in building HVAC control systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 64-84.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morovat, Navid & Athienitis, Andreas K. & Candanedo, José Agustín & Nouanegue, Hervé Frank, 2024. "Heuristic model predictive control implementation to activate energy flexibility in a fully electric school building," Energy, Elsevier, vol. 296(C).
    2. Hua, Pengmin & Wang, Haichao & Xie, Zichan & Lahdelma, Risto, 2024. "Multi-criteria evaluation of novel multi-objective model predictive control method for indoor thermal comfort," Energy, Elsevier, vol. 289(C).
    3. Germán Campos Gordillo & Germán Ramos Ruiz & Yves Stauffer & Stephan Dasen & Carlos Fernández Bandera, 2020. "EplusLauncher: An API to Perform Complex EnergyPlus Simulations in MATLAB ® and C#," Sustainability, MDPI, vol. 12(2), pages 1-14, January.
    4. Kathirgamanathan, Anjukan & De Rosa, Mattia & Mangina, Eleni & Finn, Donal P., 2021. "Data-driven predictive control for unlocking building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2019. "A new comprehensive framework for the multi-objective optimization of building energy design: Harlequin," Applied Energy, Elsevier, vol. 241(C), pages 331-361.
    6. Joe, Jaewan & Im, Piljae & Cui, Borui & Dong, Jin, 2023. "Model-based predictive control of multi-zone commercial building with a lumped building modelling approach," Energy, Elsevier, vol. 263(PA).
    7. Rana Loubani & Didier Defer & Ola Alhaj-Hasan & Julien Chamoin, 2025. "Optimization of Hydronic Heating System in a Commercial Building: Application of Predictive Control with Limited Data," Energies, MDPI, vol. 18(9), pages 1-25, April.
    8. Wan, Xin & Luo, Xiong-Lin, 2020. "Economic optimization of chemical processes based on zone predictive control with redundancy variables," Energy, Elsevier, vol. 212(C).
    9. Mohamed Hamdy & Gerardo Maria Mauro, 2017. "Multi-Objective Optimization of Building Energy Design to Reconcile Collective and Private Perspectives: CO 2 -eq vs. Discounted Payback Time," Energies, MDPI, vol. 10(7), pages 1-26, July.
    10. Harkouss, Fatima & Fardoun, Farouk & Biwole, Pascal Henry, 2018. "Passive design optimization of low energy buildings in different climates," Energy, Elsevier, vol. 165(PA), pages 591-613.
    11. Song, Jiancai & Wang, Kangning & Bian, Tianxiang & Li, Wen & Dong, Qianxing & Chen, Lei & Xue, Guixiang & Wu, Xiangdong, 2025. "A novel heat load prediction algorithm based on fuzzy C-mean clustering and mixed positional encoding informer," Applied Energy, Elsevier, vol. 388(C).
    12. Prada, A. & Gasparella, A. & Baggio, P., 2018. "On the performance of meta-models in building design optimization," Applied Energy, Elsevier, vol. 225(C), pages 814-826.
    13. Guo, Rui & Shi, Dachuan & Liu, Ying & Min, Yunran & Shi, Chengnan, 2025. "A modeling framework for integrating model predictive control into building design optimization," Applied Energy, Elsevier, vol. 388(C).
    14. Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Napolitano, Davide Ferdinando, 2019. "Retrofit of villas on Mediterranean coastlines: Pareto optimization with a view to energy-efficiency and cost-effectiveness," Applied Energy, Elsevier, vol. 254(C).
    15. Aurora Greta Ruggeri & Laura Gabrielli & Massimiliano Scarpa, 2020. "Energy Retrofit in European Building Portfolios: A Review of Five Key Aspects," Sustainability, MDPI, vol. 12(18), pages 1-38, September.
    16. Liu, Zhikai & Zhang, Huan & Wang, Yaran & You, Shijun & Dai, Ting & Jiang, Yan, 2024. "Evaluation of the controllability of multi-family building with radiator heating systems: A frequency domain approach," Energy, Elsevier, vol. 294(C).
    17. Mohammad Dabbagh & Moncef Krarti, 2021. "Optimal Control Strategies for Switchable Transparent Insulation Systems Applied to Smart Windows for US Residential Buildings," Energies, MDPI, vol. 14(10), pages 1-24, May.
    18. Zhan, Sicheng & Chong, Adrian, 2021. "Data requirements and performance evaluation of model predictive control in buildings: A modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    19. Torres-Rivas, Alba & Palumbo, Mariana & Haddad, Assed & Cabeza, Luisa F. & Jiménez, Laureano & Boer, Dieter, 2018. "Multi-objective optimisation of bio-based thermal insulation materials in building envelopes considering condensation risk," Applied Energy, Elsevier, vol. 224(C), pages 602-614.
    20. Hussain, Syed Asad & Huang, Gongsheng & Yuen, Richard Kwok Kit & Wang, Wei, 2020. "Adaptive regression model-based real-time optimal control of central air-conditioning systems," Applied Energy, Elsevier, vol. 276(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.