IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v224y2018icp602-614.html
   My bibliography  Save this article

Multi-objective optimisation of bio-based thermal insulation materials in building envelopes considering condensation risk

Author

Listed:
  • Torres-Rivas, Alba
  • Palumbo, Mariana
  • Haddad, Assed
  • Cabeza, Luisa F.
  • Jiménez, Laureano
  • Boer, Dieter

Abstract

The reduction in energy demand for heating and cooling with insulation materials increases the material related environmental impact. Thus, implementing low embodied energy materials may equilibrate this trade-off. Actual trends in passive house postulate bio-based materials as an alternative to conventional ones. Despite that, the implementation of those insulators should be carried out with a deeper analysis due to their hygroscopic properties. The moisture transfer, the associated condensation risk and the energy consumption for seven bio-based materials and polyurethane for a building-like cubicle are analysed. The performance is evaluated combining a software application to model the cubicle (EnergyPlus) and a tool to optimize its performance (jEPlus). The novelty of this optimization approach is to include and evaluate the effects of moisture in these insulation materials, taking into account the mass transfer through the different layers and the evaporation of the different materials. This methodology helps optimise the insulation type and thickness verifying the condensation risk, preventing the deterioration of the materials. The total cost of the different solutions is quantified, and the environmental impact is determined using the life cycle assessment methodology. The effect of climate conditions and the envelope configuration, as well as the risk of condensation, are quantified. The results show that cost and environmental impact can be reduced if bio-based materials are used instead of conventional ones, especially in semiarid climates. Condensation risk occurs for large thicknesses and in humid climates. In our case studies, hemp offered the most balanced solution.

Suggested Citation

  • Torres-Rivas, Alba & Palumbo, Mariana & Haddad, Assed & Cabeza, Luisa F. & Jiménez, Laureano & Boer, Dieter, 2018. "Multi-objective optimisation of bio-based thermal insulation materials in building envelopes considering condensation risk," Applied Energy, Elsevier, vol. 224(C), pages 602-614.
  • Handle: RePEc:eee:appene:v:224:y:2018:i:c:p:602-614
    DOI: 10.1016/j.apenergy.2018.04.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918306378
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.04.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2016. "Multi-stage and multi-objective optimization for energy retrofitting a developed hospital reference building: A new approach to assess cost-optimality," Applied Energy, Elsevier, vol. 174(C), pages 37-68.
    2. Méndez Echenagucia, Tomás & Capozzoli, Alfonso & Cascone, Ylenia & Sassone, Mario, 2015. "The early design stage of a building envelope: Multi-objective search through heating, cooling and lighting energy performance analysis," Applied Energy, Elsevier, vol. 154(C), pages 577-591.
    3. Kalogirou, Soteris A., 2004. "Optimization of solar systems using artificial neural-networks and genetic algorithms," Applied Energy, Elsevier, vol. 77(4), pages 383-405, April.
    4. Yang, Haiyue & Wang, Yazhou & Yu, Qianqian & Cao, Guoliang & Yang, Rue & Ke, Jiaona & Di, Xin & Liu, Feng & Zhang, Wenbo & Wang, Chengyu, 2018. "Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage," Applied Energy, Elsevier, vol. 212(C), pages 455-464.
    5. Cascone, Ylenia & Capozzoli, Alfonso & Perino, Marco, 2018. "Optimisation analysis of PCM-enhanced opaque building envelope components for the energy retrofitting of office buildings in Mediterranean climates," Applied Energy, Elsevier, vol. 211(C), pages 929-953.
    6. Tulus, Victor & Boer, Dieter & Cabeza, Luisa F. & Jiménez, Laureano & Guillén-Gosálbez, Gonzalo, 2016. "Enhanced thermal energy supply via central solar heating plants with seasonal storage: A multi-objective optimization approach," Applied Energy, Elsevier, vol. 181(C), pages 549-561.
    7. Wu, Raphael & Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2017. "Multiobjective optimisation of energy systems and building envelope retrofit in a residential community," Applied Energy, Elsevier, vol. 190(C), pages 634-649.
    8. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    9. Delgarm, N. & Sajadi, B. & Kowsary, F. & Delgarm, S., 2016. "Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO)," Applied Energy, Elsevier, vol. 170(C), pages 293-303.
    10. Menoufi, Karim & Castell, Albert & Navarro, Lídia & Pérez, Gabriel & Boer, Dieter & Cabeza, Luisa F., 2012. "Evaluation of the environmental impact of experimental cubicles using Life Cycle Assessment: A highlight on the manufacturing phase," Applied Energy, Elsevier, vol. 92(C), pages 534-544.
    11. Nguyen, Anh-Tuan & Reiter, Sigrid & Rigo, Philippe, 2014. "A review on simulation-based optimization methods applied to building performance analysis," Applied Energy, Elsevier, vol. 113(C), pages 1043-1058.
    12. Fan, Yuling & Xia, Xiaohua, 2017. "A multi-objective optimization model for energy-efficiency building envelope retrofitting plan with rooftop PV system installation and maintenance," Applied Energy, Elsevier, vol. 189(C), pages 327-335.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ángel Benigno González-Avilés & Carlos Pérez-Carramiñana & Antonio Galiano-Garrigós & Fernando Ibarra-Coves & Claudia Lozano-Romero, 2022. "Analysis of the Energy Efficiency of Le Corbusier’s Dwellings: The Cité Frugès, an Opportunity to Reuse Garden Cities Designed for Healthy and Working Life," Sustainability, MDPI, vol. 14(8), pages 1-19, April.
    2. Forde, Joe & Hopfe, Christina J. & McLeod, Robert S. & Evins, Ralph, 2020. "Temporal optimization for affordable and resilient Passivhaus dwellings in the social housing sector," Applied Energy, Elsevier, vol. 261(C).
    3. Valeria Annibaldi & Federica Cucchiella & Marianna Rotilio, 2020. "A Sustainable Solution for Energy Efficiency in Italian Climatic Contexts," Energies, MDPI, vol. 13(11), pages 1-16, June.
    4. Rudai Shan & Lars Junghans, 2023. "Multi-Objective Optimization for High-Performance Building Facade Design: A Systematic Literature Review," Sustainability, MDPI, vol. 15(21), pages 1-33, November.
    5. Rabbat, Christelle & Awad, Sary & Villot, Audrey & Rollet, Delphine & Andrès, Yves, 2022. "Sustainability of biomass-based insulation materials in buildings: Current status in France, end-of-life projections and energy recovery potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Galimshina, Alina & Moustapha, Maliki & Hollberg, Alexander & Padey, Pierryves & Lasvaux, Sébastien & Sudret, Bruno & Habert, Guillaume, 2022. "Bio-based materials as a robust solution for building renovation: A case study," Applied Energy, Elsevier, vol. 316(C).
    7. Zhang, Chong & Gang, Wenjie & Xu, Xinhua & Li, Liao & Wang, Jinbo, 2019. "Modelling, experimental test, and design of an active air permeable wall by utilizing the low-grade exhaust air," Applied Energy, Elsevier, vol. 240(C), pages 730-743.
    8. Es-sakali, Niima & Charai, Mouatassim & Idrissi Kaitouni, Samir & Ait Laasri, Imad & Mghazli, Mohamed Oualid & Cherkaoui, Moha & Pfafferott, Jens & Ukjoo, Sung, 2023. "Energy efficiency and hygrothermal performance of hemp clay walls for Moroccan residential buildings: An integrated lab-scale, in-situ and simulation-based assessment," Applied Energy, Elsevier, vol. 352(C).
    9. Yang, Jianming & Lin, Zhongqi & Wu, Huijun & Chen, Qingchun & Xu, Xinhua & Huang, Gongsheng & Fan, Liseng & Shen, Xujun & Gan, Keming, 2020. "Inverse optimization of building thermal resistance and capacitance for minimizing air conditioning loads," Renewable Energy, Elsevier, vol. 148(C), pages 975-986.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2019. "A new comprehensive framework for the multi-objective optimization of building energy design: Harlequin," Applied Energy, Elsevier, vol. 241(C), pages 331-361.
    2. Prada, A. & Gasparella, A. & Baggio, P., 2018. "On the performance of meta-models in building design optimization," Applied Energy, Elsevier, vol. 225(C), pages 814-826.
    3. Rudai Shan & Lars Junghans, 2023. "Multi-Objective Optimization for High-Performance Building Facade Design: A Systematic Literature Review," Sustainability, MDPI, vol. 15(21), pages 1-33, November.
    4. Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Napolitano, Davide Ferdinando, 2019. "Retrofit of villas on Mediterranean coastlines: Pareto optimization with a view to energy-efficiency and cost-effectiveness," Applied Energy, Elsevier, vol. 254(C).
    5. Cascone, Ylenia & Capozzoli, Alfonso & Perino, Marco, 2018. "Optimisation analysis of PCM-enhanced opaque building envelope components for the energy retrofitting of office buildings in Mediterranean climates," Applied Energy, Elsevier, vol. 211(C), pages 929-953.
    6. Fernandes, Marco S. & Rodrigues, Eugénio & Gaspar, Adélio Rodrigues & Costa, José J. & Gomes, Álvaro, 2019. "The impact of thermal transmittance variation on building design in the Mediterranean region," Applied Energy, Elsevier, vol. 239(C), pages 581-597.
    7. Shadram, Farshid & Bhattacharjee, Shimantika & Lidelöw, Sofia & Mukkavaara, Jani & Olofsson, Thomas, 2020. "Exploring the trade-off in life cycle energy of building retrofit through optimization," Applied Energy, Elsevier, vol. 269(C).
    8. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "A comparison of an energy/economic-based against an exergoeconomic-based multi-objective optimisation for low carbon building energy design," Energy, Elsevier, vol. 128(C), pages 244-263.
    9. Mohamed Hamdy & Gerardo Maria Mauro, 2017. "Multi-Objective Optimization of Building Energy Design to Reconcile Collective and Private Perspectives: CO 2 -eq vs. Discounted Payback Time," Energies, MDPI, vol. 10(7), pages 1-26, July.
    10. Harkouss, Fatima & Fardoun, Farouk & Biwole, Pascal Henry, 2018. "Passive design optimization of low energy buildings in different climates," Energy, Elsevier, vol. 165(PA), pages 591-613.
    11. Huang, Junchao & Chen, Xi & Yang, Hongxing & Zhang, Weilong, 2018. "Numerical investigation of a novel vacuum photovoltaic curtain wall and integrated optimization of photovoltaic envelope systems," Applied Energy, Elsevier, vol. 229(C), pages 1048-1060.
    12. Schito, Eva & Conti, Paolo & Testi, Daniele, 2018. "Multi-objective optimization of microclimate in museums for concurrent reduction of energy needs, visitors’ discomfort and artwork preservation risks," Applied Energy, Elsevier, vol. 224(C), pages 147-159.
    13. Nayara R. M. Sakiyama & Joyce C. Carlo & Leonardo Mazzaferro & Harald Garrecht, 2021. "Building Optimization through a Parametric Design Platform: Using Sensitivity Analysis to Improve a Radial-Based Algorithm Performance," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    14. Li, Hong Xian & Li, Yan & Jiang, Boya & Zhang, Limao & Wu, Xianguo & Lin, Jingyi, 2020. "Energy performance optimisation of building envelope retrofit through integrated orthogonal arrays with data envelopment analysis," Renewable Energy, Elsevier, vol. 149(C), pages 1414-1423.
    15. Cesare Biserni & Paolo Valdiserri & Dario D’Orazio & Massimo Garai, 2018. "Energy Retrofitting Strategies and Economic Assessments: The Case Study of a Residential Complex Using Utility Bills," Energies, MDPI, vol. 11(8), pages 1-15, August.
    16. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2016. "Multi-stage and multi-objective optimization for energy retrofitting a developed hospital reference building: A new approach to assess cost-optimality," Applied Energy, Elsevier, vol. 174(C), pages 37-68.
    17. Shaoxiong Li & Le Liu & Changhai Peng, 2020. "A Review of Performance-Oriented Architectural Design and Optimization in the Context of Sustainability: Dividends and Challenges," Sustainability, MDPI, vol. 12(4), pages 1-36, February.
    18. Enghok Leang & Pierre Tittelein & Laurent Zalewski & Stéphane Lassue, 2020. "Design Optimization of a Composite Solar Wall Integrating a PCM in a Individual House: Heating Demand and Thermal Comfort Considerations," Energies, MDPI, vol. 13(21), pages 1-29, October.
    19. Vilppu Eloranta & Aki Grönman & Aleksandra Woszczek, 2021. "Case Study and Feasibility Analysis of Multi-Objective Life Cycle Energy System Optimization in a Nordic Campus Building," Energies, MDPI, vol. 14(22), pages 1-17, November.
    20. Ascione, Fabrizio & Bianco, Nicola & Maria Mauro, Gerardo & Napolitano, Davide Ferdinando, 2019. "Building envelope design: Multi-objective optimization to minimize energy consumption, global cost and thermal discomfort. Application to different Italian climatic zones," Energy, Elsevier, vol. 174(C), pages 359-374.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:224:y:2018:i:c:p:602-614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.