IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v327y2025ics0360544225020626.html
   My bibliography  Save this article

A low-carbon trading strategy of multi-microgrid system considering electricity-hydrogen-carbon coupling characteristics

Author

Listed:
  • Liu, Nian
  • Yan, Jinwei
  • Tan, Lu
  • Li, Xinhao
  • Chen, Youxin
  • Zhang, Kuan

Abstract

In the context of low-carbon development in the power system, the hydrogen integrated multi-microgrids system (MMG) has become an important means of efficient multi-energy utilization and carbon emission reduction. This paper proposes an electricity-hydrogen trading strategy considering the energy-carbon coupling effect to promote the energy self-balance and low-carbon operation of the MMG. Firstly, the concept of carbon storage ratio (CSR) is proposed for energy storage (ES) equipment including electricity energy storage (EES) and hydrogen energy storage (HES) to uniformly quantify the equivalent carbon emission. Then, a carbon flow calculation method considering the CSR-based carbon emission flow indexes is developed to calculate the distribution of carbon emission flow within the MMG. Moreover, a low-carbon trading strategy of MMG considering electricity-hydrogen-carbon coupling characteristics is proposed to achieve low carbon and reliable operation, where the carbon emission cost related to CSR and carbon emission flow indexes is integrated into the dynamic trading process of electricity-hydrogen energy. A parallel and distributed consensus-based (PDC) algorithm is further designed to transform the complex MMG trading problem into multiple energy-autonomous sub-problems of each microgrid for the efficient solution. Comparative case studies demonstrate that the economic benefits of microgrids can be all improved while the carbon emission of MMG is reduced by 19.47 %.

Suggested Citation

  • Liu, Nian & Yan, Jinwei & Tan, Lu & Li, Xinhao & Chen, Youxin & Zhang, Kuan, 2025. "A low-carbon trading strategy of multi-microgrid system considering electricity-hydrogen-carbon coupling characteristics," Energy, Elsevier, vol. 327(C).
  • Handle: RePEc:eee:energy:v:327:y:2025:i:c:s0360544225020626
    DOI: 10.1016/j.energy.2025.136420
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225020626
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Junjie & Wang, Yudong & Dong, Lei, 2024. "Low carbon-oriented planning of shared energy storage station for multiple integrated energy systems considering energy-carbon flow and carbon emission reduction," Energy, Elsevier, vol. 290(C).
    2. Zhu, Dafeng & Yang, Bo & Liu, Qi & Ma, Kai & Zhu, Shanying & Ma, Chengbin & Guan, Xinping, 2020. "Energy trading in microgrids for synergies among electricity, hydrogen and heat networks," Applied Energy, Elsevier, vol. 272(C).
    3. Liao, Wei & Xiao, Fu & Li, Yanxue & Peng, Jinqing, 2024. "Comparative study on electricity transactions between multi-microgrid: A hybrid game theory-based peer-to-peer trading in heterogeneous building communities considering electric vehicles," Applied Energy, Elsevier, vol. 367(C).
    4. Yang, Weijia & Huang, Yuping & Zhang, Tianren & Zhao, Daiqing, 2023. "Mechanism and analytical methods for carbon emission-exergy flow distribution in heat-electricity integrated energy system," Applied Energy, Elsevier, vol. 352(C).
    5. Tu, Wei & Santi, Paolo & Zhao, Tianhong & He, Xiaoyi & Li, Qingquan & Dong, Lei & Wallington, Timothy J. & Ratti, Carlo, 2019. "Acceptability, energy consumption, and costs of electric vehicle for ride-hailing drivers in Beijing," Applied Energy, Elsevier, vol. 250(C), pages 147-160.
    6. Zhong, Xiaoqing & Zhong, Weifeng & Liu, Yi & Yang, Chao & Xie, Shengli, 2022. "Optimal energy management for multi-energy multi-microgrid networks considering carbon emission limitations," Energy, Elsevier, vol. 246(C).
    7. Jiang, Yunpeng & Ren, Zhouyang & Lu, Chunhao & Li, Hui & Yang, Zhixue, 2024. "A region-based low-carbon operation analysis method for integrated electricity-hydrogen-gas systems," Applied Energy, Elsevier, vol. 355(C).
    8. Zhao, Bingxu & Cao, Xiaodong & Duan, Pengfei, 2024. "Cooperative operation of multiple low-carbon microgrids: An optimization study addressing gaming fraud and multiple uncertainties," Energy, Elsevier, vol. 297(C).
    9. Huang, Yujing & Wang, Yudong & Liu, Nian, 2022. "Low-carbon economic dispatch and energy sharing method of multiple Integrated Energy Systems from the perspective of System of Systems," Energy, Elsevier, vol. 244(PA).
    10. Hou, Hui & Xue, Mengya & Xu, Yan & Xiao, Zhenfeng & Deng, Xiangtian & Xu, Tao & Liu, Peng & Cui, Rongjian, 2020. "Multi-objective economic dispatch of a microgrid considering electric vehicle and transferable load," Applied Energy, Elsevier, vol. 262(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Runzhuo & Bu, Siqi, 2025. "Evaluation and mitigation of carbon emissions in energy industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    2. Zhong, Xiaoqing & Zhong, Weifeng & Lin, Zhenjia & Zhou, Guoxu & Lai, Loi Lei & Xie, Shengli & Yan, Jinyue, 2024. "Localized electricity and carbon allowance management for interconnected discrete manufacturing systems considering algorithmic and physical feasibility," Applied Energy, Elsevier, vol. 372(C).
    3. Ge, Haotian & Zhu, Yu & Zhong, Jiuming & Wu, Liang, 2024. "Day-ahead optimization for smart energy management of multi-microgrid using a stochastic-robust model," Energy, Elsevier, vol. 313(C).
    4. Yang, Ting & Xu, Zheming & Ji, Shijie & Liu, Guoliang & Li, Xinhong & Kong, Haibo, 2025. "Cooperative optimal dispatch of multi-microgrids for low carbon economy based on personalized federated reinforcement learning," Applied Energy, Elsevier, vol. 378(PA).
    5. Zhang, Yue & Wu, Qiong & Ren, Hongbo & Li, Qifen & Zhou, Weisheng, 2024. "Optimal operation of multi-microgrid systems considering multi-level energy-certificate-carbon coupling trading," Renewable Energy, Elsevier, vol. 227(C).
    6. Huo, Shasha & Li, Qi & Pu, Yuchen & Xie, Shuqi & Chen, Weirong, 2024. "Low carbon dispatch method for hydrogen-containing integrated energy system considering seasonal carbon trading and energy sharing mechanism," Energy, Elsevier, vol. 308(C).
    7. Nurcan Yarar & Yeliz Yoldas & Serkan Bahceci & Ahmet Onen & Jaesung Jung, 2024. "A Comprehensive Review Based on the Game Theory with Energy Management and Trading," Energies, MDPI, vol. 17(15), pages 1-29, July.
    8. Tan, Jinjing & Pan, Weiqi & Li, Yang & Hu, Haoming & Zhang, Can, 2023. "Energy-sharing operation strategy of multi-district integrated energy systems considering carbon and renewable energy certificate trading," Applied Energy, Elsevier, vol. 339(C).
    9. Lei, Lin & Wu, Nan, 2024. "An optimal scheduling strategy for electricity-thermal synergy and complementarity among multi-microgrid based on cooperative games," Renewable Energy, Elsevier, vol. 237(PA).
    10. Matija Kostelac & Lin Herenčić & Tomislav Capuder, 2022. "Planning and Operational Aspects of Individual and Clustered Multi-Energy Microgrid Options," Energies, MDPI, vol. 15(4), pages 1-17, February.
    11. Lyu, Cheng & Jia, Youwei & Xu, Zhao, 2021. "Fully decentralized peer-to-peer energy sharing framework for smart buildings with local battery system and aggregated electric vehicles," Applied Energy, Elsevier, vol. 299(C).
    12. Félix González & Paul Arévalo & Luis Ramirez, 2025. "Game Theory and Robust Predictive Control for Peer-to-Peer Energy Management: A Pathway to a Low-Carbon Economy," Sustainability, MDPI, vol. 17(5), pages 1-23, February.
    13. Gao, Xianhui & Wang, Sheng & Sun, Ying & Zhai, Junyi & Chen, Nan & Zhang, Xiao-Ping, 2024. "Low-carbon energy scheduling for integrated energy systems considering offshore wind power hydrogen production and dynamic hydrogen doping strategy," Applied Energy, Elsevier, vol. 376(PA).
    14. Anjie Lu & Jianguo Zhou & Minglei Qin & Danchen Liu, 2024. "Considering Carbon–Hydrogen Coupled Integrated Energy Systems: A Pathway to Sustainable Energy Transition in China Under Uncertainty," Sustainability, MDPI, vol. 16(21), pages 1-32, October.
    15. Li, Yanbin & Hu, Weikun & Zhang, Feng & Li, Yun, 2025. "Multi-objective collaborative operation optimization of park-level integrated energy system clusters considering green power forecasting and trading," Energy, Elsevier, vol. 319(C).
    16. Fan, Songli & Xu, Guodong & Jiang, Baoping & Wu, Zhengtian & Xing, Haijun & Gao, Yang & Ai, Qian, 2025. "Low-carbon economic operation of commercial park-level integrated energy systems incorporating supply and demand flexibility," Energy, Elsevier, vol. 323(C).
    17. Xiong, Kang & Hu, Weihao & Cao, Di & Li, Sichen & Zhang, Guozhou & Liu, Wen & Huang, Qi & Chen, Zhe, 2023. "Coordinated energy management strategy for multi-energy hub with thermo-electrochemical effect based power-to-ammonia: A multi-agent deep reinforcement learning enabled approach," Renewable Energy, Elsevier, vol. 214(C), pages 216-232.
    18. Kwon, Kihan & Seo, Minsik & Min, Seungjae, 2020. "Efficient multi-objective optimization of gear ratios and motor torque distribution for electric vehicles with two-motor and two-speed powertrain system," Applied Energy, Elsevier, vol. 259(C).
    19. Gao, Xianhui & Wang, Sheng & Sun, Ying & Zhai, Junyi, 2024. "Low-carbon operation of integrated electricity–gas system with hydrogen injection considering hydrogen mixed gas turbine and laddered carbon trading," Applied Energy, Elsevier, vol. 374(C).
    20. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Fernández-Lobato, Lázuli & Jurado, Francisco, 2023. "Robust energy management in isolated microgrids with hydrogen storage and demand response," Applied Energy, Elsevier, vol. 345(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:327:y:2025:i:c:s0360544225020626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.