IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v327y2025ics0360544225020018.html
   My bibliography  Save this article

Cost-carbon-water nexus analysis of a biomass-wind-solar integrated cogeneration system: A system and ecological perspective

Author

Listed:
  • Chen, Yuzhu
  • Yang, Kaifeng
  • Guo, Weimin
  • Hao, Shengwan
  • Du, Na
  • Yang, Kun
  • Lund, Peter D.

Abstract

Integrating local full-spectrum solar, wind, and biomass resources into industrial energy systems can reduce fossil fuel dependency and environmental impact. Focusing on heat and power requirements of an industrial park with demand response method, a biomass-solar-wind integrated energy system is constructed employing an organic Rankine cycle to efficiently harness renewable and waste thermal energy. Optimal scheduling of devices is determined to maximize profits for both the system and users, followed by comprehensive cost, carbon, and water footprint analyses from an ecological standpoint. The results demonstrate that the renewable energy integration achieves a 96.3% penetration rate through biomass utilization, albeit accompanied by a 44.0% reduction in system profitability and a 2.1-fold increase in water footprint compared to natural gas-based systems. Sensitivity analysis underscores the significant influence of water parameters on the energy system, providing crucial insights for advancing renewable energy management practices through integrated cost-carbon-water nexus analysis. This study advances energy transition research beyond single-criterion optimization, offering policymakers a dispatching framework to align industrial energy planning with planetary boundaries through explicit water-carbon-economic tradeoff quantification.

Suggested Citation

  • Chen, Yuzhu & Yang, Kaifeng & Guo, Weimin & Hao, Shengwan & Du, Na & Yang, Kun & Lund, Peter D., 2025. "Cost-carbon-water nexus analysis of a biomass-wind-solar integrated cogeneration system: A system and ecological perspective," Energy, Elsevier, vol. 327(C).
  • Handle: RePEc:eee:energy:v:327:y:2025:i:c:s0360544225020018
    DOI: 10.1016/j.energy.2025.136359
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225020018
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136359?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Jing-Li & Huang, Xi & Shi, Jie & Li, Kai & Cai, Jingwen & Zhang, Xian, 2023. "Complementary potential of wind-solar-hydro power in Chinese provinces: Based on a high temporal resolution multi-objective optimization model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Guan, Zhimin & Lu, Chunyan & Li, Yiming & Wang, Jiangjiang, 2023. "Chance-constrained optimization of hybrid solar combined cooling, heating and power system considering energetic, economic, environmental, and flexible performances," Renewable Energy, Elsevier, vol. 212(C), pages 908-920.
    3. Sambasivam, Balasubramanian & Xu, Yuan, 2023. "Reducing solar PV curtailment through demand-side management and economic dispatch in Karnataka, India," Energy Policy, Elsevier, vol. 172(C).
    4. Li, Rui & Zhai, Panpan & Li, Jinping & Liu, Ye & Novakovic, Vojislavi, 2024. "Performance analysis of micro heat pipe PV/T within and outside the greenhouse in northwest China," Energy, Elsevier, vol. 302(C).
    5. Mahdavi, Meisam & Awaafo, Augustine & Jurado, Francisco & Vera, David & Verdú Ramos, Ricardo Alan, 2023. "Wind, solar and biogas power generation in water-stressed areas of Morocco considering water and biomass availability constraints and carbon emission limits," Energy, Elsevier, vol. 282(C).
    6. Ma, Xiandong & Wang, Yifei & Qin, Jianrong, 2013. "Generic model of a community-based microgrid integrating wind turbines, photovoltaics and CHP generations," Applied Energy, Elsevier, vol. 112(C), pages 1475-1482.
    7. Wang, Haibing & Zhao, Anjie & Khan, Muhammad Qasim & Sun, Weiqing, 2024. "Optimal operation of energy hub considering reward-punishment ladder carbon trading and electrothermal demand coupling," Energy, Elsevier, vol. 286(C).
    8. Ullah, Zia & Elkadeem, M.R. & Kotb, Kotb M. & Taha, Ibrahim B.M. & Wang, Shaorong, 2021. "Multi-criteria decision-making model for optimal planning of on/off grid hybrid solar, wind, hydro, biomass clean electricity supply," Renewable Energy, Elsevier, vol. 179(C), pages 885-910.
    9. Wang, Yongli & Liu, Zhen & Wang, Jingyan & Du, Boxin & Qin, Yumeng & Liu, Xiaoli & Liu, Lin, 2023. "A Stackelberg game-based approach to transaction optimization for distributed integrated energy system," Energy, Elsevier, vol. 283(C).
    10. Wang, Jiangjiang & Cui, Zhiheng & Yao, Wenqi & Huo, Shuojie, 2023. "Regulation strategies and thermodynamic analysis of combined cooling, heating, and power system integrated with biomass gasification and solid oxide fuel cell," Energy, Elsevier, vol. 266(C).
    11. Fu, Chao & Li, Anxiang & Shen, Qingfei & Ding, Shuo & Duan, Zheng & Wang, Jiangjiang, 2024. "Exergy-water nexus of a multi-energy complementary trigeneration system with different fuel mixture ratios," Energy, Elsevier, vol. 304(C).
    12. Mehrabian, M.J. & Khoshgoftar Manesh, M.H., 2023. "4E, risk, diagnosis, and availability evaluation for optimal design of a novel biomass-solar-wind driven polygeneration system," Renewable Energy, Elsevier, vol. 219(P2).
    13. Yang, Kun & He, Yiyun & Du, Na & Yan, Ping & Zhu, Neng & Chen, Yuzhu & Wang, Jun & Lund, Peter D., 2024. "Exergy, exergoeconomic, and exergoenvironmental analyses of novel solar- and biomass-driven trigeneration system integrated with organic Rankine cycle," Energy, Elsevier, vol. 301(C).
    14. Fu, Xintao & Zhang, Yilun & Liu, Xu & Liu, Zhan, 2024. "Stable power supply system consisting of solar, wind and liquid carbon dioxide energy storage," Renewable Energy, Elsevier, vol. 221(C).
    15. Fu, Chao & Zhang, Wei & Li, Anxiang & Shen, Qingfei & Zhao, Ning & Cui, Zhiheng & Wang, Jiangjiang, 2024. "Exergy-water-carbon-cost nexus of a biomass-syngas-fueled fuel cell system integrated with organic Rankine cycle," Renewable Energy, Elsevier, vol. 231(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Haotian & Li, Rui & Song, Tongqing & Ju, Shenghong, 2025. "Short-term optimal scheduling and comprehensive assessment of hydro-photovoltaic-wind systems augmented with hybrid pumped storage hydropower plants and diversified energy storage configurations," Applied Energy, Elsevier, vol. 389(C).
    2. Chen, Yuzhu & Guo, Weimin & Du, Na & Yang, Kun & Wang, Jiangjiang, 2024. "Master slave game-based optimization of an off-grid combined cooling and power system coupled with solar thermal and photovoltaics considering carbon cost allocation," Renewable Energy, Elsevier, vol. 229(C).
    3. Martínez-Martínez, Yenisleidy & Dewulf, Jo & Casas-Ledón, Yannay, 2022. "GIS-based site suitability analysis and ecosystem services approach for supporting renewable energy development in south-central Chile," Renewable Energy, Elsevier, vol. 182(C), pages 363-376.
    4. Mohamed Abdel-Basset & Abduallah Gamal & Ibrahim M. Hezam & Karam M. Sallam, 2024. "Sustainability assessment of optimal location of electric vehicle charge stations: a conceptual framework for green energy into smart cities," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 11475-11513, May.
    5. Lv, Furong & Tang, Haiping, 2025. "Assessing the impact of climate change on the optimal solar–wind hybrid power generation potential in China: A focus on stability and complementarity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    6. Fan, Songli & Xu, Guodong & Jiang, Baoping & Wu, Zhengtian & Xing, Haijun & Gao, Yang & Ai, Qian, 2025. "Low-carbon economic operation of commercial park-level integrated energy systems incorporating supply and demand flexibility," Energy, Elsevier, vol. 323(C).
    7. Elkadeem, Mohamed R. & Kotb, Kotb M. & Abido, Mohamed A. & Hasanien, Hany M. & Atiya, Eman G. & Almakhles, Dhafer & Elmorshedy, Mahmoud F., 2024. "Techno-enviro-socio-economic design and finite set model predictive current control of a grid-connected large-scale hybrid solar/wind energy system: A case study of Sokhna Industrial Zone, Egypt," Energy, Elsevier, vol. 289(C).
    8. Ren, Xiaoxiao & Wang, Jinshi & Yang, Sifan & Zhao, Quanbin & Jia, Yifan & Ou, Kejie & Hu, Guangtao & Yan, Junjie, 2025. "A novel multi-objective Stackelberg game model for multi-energy dynamic pricing and flexible scheduling in distributed multi-energy system," Energy, Elsevier, vol. 325(C).
    9. Khan, Zulfiqar Ahmad & Khan, Shabbir Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2024. "DSPM: Dual sequence prediction model for efficient energy management in micro-grid," Applied Energy, Elsevier, vol. 356(C).
    10. Santonab Chakraborty & Himalaya Nirjhar Datta & Kanak Kalita & Shankar Chakraborty, 2023. "A narrative review of multi-objective optimization on the basis of ratio analysis (MOORA) method in decision making," OPSEARCH, Springer;Operational Research Society of India, vol. 60(4), pages 1844-1887, December.
    11. Altayib, Khalid & Dincer, Ibrahim, 2024. "Development of a large-scale integrated solar-biomass thermal facility for green production of useful outputs," Energy, Elsevier, vol. 313(C).
    12. Nikiforakis, Ioannis & Mamalis, Sotirios & Assanis, Dimitris, 2025. "Understanding Solid Oxide Fuel Cell Hybridization: A Critical Review," Applied Energy, Elsevier, vol. 377(PC).
    13. Cross, Philip & Ma, Xiandong, 2014. "Nonlinear system identification for model-based condition monitoring of wind turbines," Renewable Energy, Elsevier, vol. 71(C), pages 166-175.
    14. Kamel, Rashad M., 2014. "Employing two novel mechanical fault ride through controllers for keeping stability of fixed speed wind generation systems hosted by standalone micro-grid," Applied Energy, Elsevier, vol. 116(C), pages 398-408.
    15. Liu, Zhi-Feng & Luo, Xing-Fu & Chen, Xiao-Rui & Huang, Ya-He & Liu, You-Yuan & Tang, Yu & Kang, Qing & Guo, Liang, 2024. "An innovative bi-level scheduling model with hydrogen-thermal-electricity co-supply and dynamic carbon capture strategies for regional integrated energy systems considering hybrid games," Renewable Energy, Elsevier, vol. 237(PB).
    16. Chen, Yuzhu & Guo, Weimin & Lund, Peter D. & Du, Na & Yang, Kun & wang, Jun, 2024. "Configuration optimization of a wind-solar based net-zero emission tri-generation energy system considering renewable power and carbon trading mechanisms," Renewable Energy, Elsevier, vol. 232(C).
    17. Smaoui, Mariem & Rekik, Mouna & Krichen, Lotfi, 2025. "Optimal design of an off-grid electrical system in remote areas with different renewable energy scenarios," Energy, Elsevier, vol. 318(C).
    18. Tapia Carpio, Lucio Guido & Cardoso Guimarães, Frederico A., 2024. "Regional diversification of hydro, wind, and solar generation potential: A mean-variance model to stabilize power fluctuations in the Brazilian integrated electrical energy transmission and distributi," Renewable Energy, Elsevier, vol. 235(C).
    19. Ji, Jie & Wen, Wenchao & Xie, Yingqi & Xia, Aoyun & Wang, Wenjie & Xie, Jinbo & Yin, Qingyuan & Ma, Mengyu & Huang, Hui & Huang, Xiaolong & Zhang, Chu & Wang, Yaodong, 2024. "Optimization and uncertainty analysis of Co-combustion ratios in a semi-isolated green energy combined cooling, heating, and power system (SIGE-CCHP)," Energy, Elsevier, vol. 302(C).
    20. Liang, Ziwen & Mu, Longhua, 2024. "Multi-agent low-carbon optimal dispatch of regional integrated energy system based on mixed game theory," Energy, Elsevier, vol. 295(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:327:y:2025:i:c:s0360544225020018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.