IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223032103.html
   My bibliography  Save this article

Techno-enviro-socio-economic design and finite set model predictive current control of a grid-connected large-scale hybrid solar/wind energy system: A case study of Sokhna Industrial Zone, Egypt

Author

Listed:
  • Elkadeem, Mohamed R.
  • Kotb, Kotb M.
  • Abido, Mohamed A.
  • Hasanien, Hany M.
  • Atiya, Eman G.
  • Almakhles, Dhafer
  • Elmorshedy, Mahmoud F.

Abstract

This article offers a cohesive design optimization and control framework of a large-scale grid-connected battery and battery-less hybrid solar/wind system. Primarily, a techno-enviro-socio-economic design optimization and feasibility analysis were performed for eight distinct energy alternatives. Secondly, a finite-set model predictive current control (FS-MPCC) was proposed to improve both stability and dynamic behavior of the optimal energy alternative under various climatic circumstances. Moreover, finite-set model predictive control is furtherly employed to exploit the maximum permissible power from both solar and wind energies. The proposed framework is verified over a new case-study in Sokhna Industrial Zone in Suez, Egypt. The studied load demand combines both industrial and residential load sectors with a daily consumption of 40,500 kWh and of 4-MW peak. The design optimization results revealed that the grid-connected photovoltaic/wind turbines/converter system has superior sustainable and economic performances with the least net present cost ($17,371,980) and energy cost (0.0782 $/kWh). These values were less than those of the base-case system (grid-only) by 17 % and 22 %, respectively. Moreover, the reliability analysis found a tiny and tolerable daily capacity shortage of 5835-kWh despite the five annual grid outages. Besides, around 52 % of the total energy production was acquired from both solar and wind generation systems, which interpreted in a maximum saving in carbon dioxide emissions by 45.8 % compared to the base-case system and offered substantial social benefits in terms of creating nearly 10 jobs. The FS-MPCC results proved a reinforced dynamic behavior for the maximum power tracking profiles of solar and wind systems as well as in the DC-bus voltage profile regarding the over- and undershoot and the steady-state response. Compared to PI controller, the proposed FS-MPCC creates dq-axis voltages and currents with less disturbances and ripples which inject current/voltage to the grid with fewer harmonics and thus increases the generator's lifetime. To sum up, the proposed method features an integrative and compelling case to be used as an efficient tool to implement large-scale renewable energy projects. It could act as a blueprint for energy developers, researchers, investors, and authorities to achieve affordable and sustainable energy access.

Suggested Citation

  • Elkadeem, Mohamed R. & Kotb, Kotb M. & Abido, Mohamed A. & Hasanien, Hany M. & Atiya, Eman G. & Almakhles, Dhafer & Elmorshedy, Mahmoud F., 2024. "Techno-enviro-socio-economic design and finite set model predictive current control of a grid-connected large-scale hybrid solar/wind energy system: A case study of Sokhna Industrial Zone, Egypt," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223032103
    DOI: 10.1016/j.energy.2023.129816
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223032103
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129816?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223032103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.