IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v318y2025ics0360544225004633.html
   My bibliography  Save this article

Optimal design of an off-grid electrical system in remote areas with different renewable energy scenarios

Author

Listed:
  • Smaoui, Mariem
  • Rekik, Mouna
  • Krichen, Lotfi

Abstract

Hybrid energy systems based on solar and wind power have gained global attention as viable solutions for remote areas where extending the electricity grid is impractical. This article examines and compares all possible renewable energy design scenarios to identify the optimal solution for electrifying an off-grid village. The studied scenarios include photovoltaic (PV)-Battery, Wind-Battery, PV-Wind-Battery, PV-Diesel generator (DG)-Battery, Wind-DG-Battery, and PV-Wind-DG-Battery. The optimal configuration for each scenario is determined using a multi-objective optimization approach, considering the total net present cost (NPC), battery state limits, and renewable fraction (RF). An epsilon constraint method is employed to solve the optimization problem. A comparison between the optimal solutions of the different scenarios is performed according to the technical, economic, and environmental contexts in order to choose the optimal configuration. A case study is conducted for a remote village in the state of Bizerte, Tunisia. The results indicate that the optimal scenario consists of a combination of 52 photovoltaic panels and 23 batteries, meeting an annual energy demand of 18,260 kWh/year. This configuration achieves the lowest NPC of $50,161.7, zero CO2 emissions, and a 100 % RF, making it the most environmentally friendly and economically efficient option.

Suggested Citation

  • Smaoui, Mariem & Rekik, Mouna & Krichen, Lotfi, 2025. "Optimal design of an off-grid electrical system in remote areas with different renewable energy scenarios," Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225004633
    DOI: 10.1016/j.energy.2025.134821
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225004633
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134821?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    2. Eriksson, E.L.V. & Gray, E.MacA., 2019. "Optimization of renewable hybrid energy systems – A multi-objective approach," Renewable Energy, Elsevier, vol. 133(C), pages 971-999.
    3. Ullah, Zia & Elkadeem, M.R. & Kotb, Kotb M. & Taha, Ibrahim B.M. & Wang, Shaorong, 2021. "Multi-criteria decision-making model for optimal planning of on/off grid hybrid solar, wind, hydro, biomass clean electricity supply," Renewable Energy, Elsevier, vol. 179(C), pages 885-910.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Xiang & Lin, Hua & Jing, Dengwei & Zhang, Xiongwen, 2025. "A novel framework for optimal design of solar-powered integrated energy system considering long timescale characteristics," Energy, Elsevier, vol. 325(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martínez-Martínez, Yenisleidy & Dewulf, Jo & Casas-Ledón, Yannay, 2022. "GIS-based site suitability analysis and ecosystem services approach for supporting renewable energy development in south-central Chile," Renewable Energy, Elsevier, vol. 182(C), pages 363-376.
    2. Mohamed Abdel-Basset & Abduallah Gamal & Ibrahim M. Hezam & Karam M. Sallam, 2024. "Sustainability assessment of optimal location of electric vehicle charge stations: a conceptual framework for green energy into smart cities," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 11475-11513, May.
    3. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    4. Alqahtani, Bader & Yang, Jin & Paul, Manosh C., 2024. "A techno-economic-environmental assessment of a hybrid-renewable pumped hydropower energy storage system: A case study of Saudi Arabia," Renewable Energy, Elsevier, vol. 232(C).
    5. Wei, Guomeng & Qu, Zhiguo & Zhang, Jianfei & Chen, Weiwen, 2025. "Techno-economic analysis of zero/negative carbon electricity-hydrogen-water hybrid system with renewable energy in remote island," Applied Energy, Elsevier, vol. 381(C).
    6. Elkadeem, Mohamed R. & Kotb, Kotb M. & Abido, Mohamed A. & Hasanien, Hany M. & Atiya, Eman G. & Almakhles, Dhafer & Elmorshedy, Mahmoud F., 2024. "Techno-enviro-socio-economic design and finite set model predictive current control of a grid-connected large-scale hybrid solar/wind energy system: A case study of Sokhna Industrial Zone, Egypt," Energy, Elsevier, vol. 289(C).
    7. Santonab Chakraborty & Himalaya Nirjhar Datta & Kanak Kalita & Shankar Chakraborty, 2023. "A narrative review of multi-objective optimization on the basis of ratio analysis (MOORA) method in decision making," OPSEARCH, Springer;Operational Research Society of India, vol. 60(4), pages 1844-1887, December.
    8. Sarah Barrows & Kendall Mongird & Brian Naughton & Rachid Darbali-Zamora, 2021. "Valuation of Distributed Wind in an Isolated System," Energies, MDPI, vol. 14(21), pages 1-20, October.
    9. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2021. "Integrating renewables into stand-alone hybrid systems meeting electric, heating, and cooling loads: A case study," Renewable Energy, Elsevier, vol. 180(C), pages 1222-1236.
    10. Fonseca, Juan D. & Commenge, Jean-Marc & Camargo, Mauricio & Falk, Laurent & Gil, Iván D., 2021. "Multi-criteria optimization for the design and operation of distributed energy systems considering sustainability dimensions," Energy, Elsevier, vol. 214(C).
    11. He, Yi & Guo, Su & Zhou, Jianxu & Ye, Jilei & Huang, Jing & Zheng, Kun & Du, Xinru, 2022. "Multi-objective planning-operation co-optimization of renewable energy system with hybrid energy storages," Renewable Energy, Elsevier, vol. 184(C), pages 776-790.
    12. Ma, Tao & Zhang, Yijie & Gu, Wenbo & Xiao, Gang & Yang, Hongxing & Wang, Shuxiao, 2022. "Strategy comparison and techno-economic evaluation of a grid-connected photovoltaic-battery system," Renewable Energy, Elsevier, vol. 197(C), pages 1049-1060.
    13. Mayer, Martin János & Szilágyi, Artúr & Gróf, Gyula, 2020. "Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm," Applied Energy, Elsevier, vol. 269(C).
    14. Zhu, Mengshu & Fang, Jiakun & Ai, Xiaomeng & Cui, Shichang & Feng, Yuang & Li, Peng & Zhang, Yihan & Zheng, Yongle & Chen, Zhe & Wen, Jinyu, 2023. "A comprehensive methodology for optimal planning of remote integrated energy systems," Energy, Elsevier, vol. 285(C).
    15. Gong, Yu & Liu, Pan & Ming, Bo & Li, Dingfang, 2021. "Identifying the effect of forecast uncertainties on hybrid power system operation: A case study of Longyangxia hydro–photovoltaic plant in China," Renewable Energy, Elsevier, vol. 178(C), pages 1303-1321.
    16. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    17. Chen, Yuzhu & Yang, Kaifeng & Guo, Weimin & Hao, Shengwan & Du, Na & Yang, Kun & Lund, Peter D., 2025. "Cost-carbon-water nexus analysis of a biomass-wind-solar integrated cogeneration system: A system and ecological perspective," Energy, Elsevier, vol. 327(C).
    18. Zhang, Yusheng & Zhao, Xuehua & Wang, Xin & Li, Aiyun & Wu, Xinhao, 2023. "Multi-objective optimization design of a grid-connected hybrid hydro-photovoltaic system considering power transmission capacity," Energy, Elsevier, vol. 284(C).
    19. Villarroel, Nicolás & Lazo, Joaquín & Watts, David, 2025. "High energy costs in insular energy systems and the potential for integrating innovative renewable solutions: The case of Chile," Renewable Energy, Elsevier, vol. 246(C).
    20. Fioriti, Davide & Pintus, Salvatore & Lutzemberger, Giovanni & Poli, Davide, 2020. "Economic multi-objective approach to design off-grid microgrids: A support for business decision making," Renewable Energy, Elsevier, vol. 159(C), pages 693-704.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225004633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.