IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v324y2025ics0360544225016676.html
   My bibliography  Save this article

Economic feasibility of floating offshore solar farms. The case of study of the Levantine-Balearic region of Spain

Author

Listed:
  • Filgueira-Vizoso, Almudena
  • Cordal-Iglesias, David
  • Fernández-Blanco, Carla
  • Fernández-Mira, Daniel
  • García-Diez, Ana Isabel
  • Castro-Santos, Laura

Abstract

This paper examines the economic feasibility of offshore floating solar farms by evaluating key financial parameters, including capital expenditure (CAPEX), operating expenditure (OPEX) and offshore solar power generation. These factors are used to calculate the levelized cost of energy (LCOE), net present value (NPV) and internal rate of return (IRR). The study focuses on the Levantine-Balearic region of Spain, applying these methods to the Merganser floating offshore solar platform. To improve accuracy, several spatial and regulatory constraints were taken into account, such as bathymetry (50–200 m), Spanish Maritime Land Management (POEM), fishing grounds, power and telecommunication cables, marine protected areas, Natura 2000 Network, biosphere reserves and priority areas for biodiversity and national defence. The results highlight the importance of incorporating spatial constraints when assessing the economic viability of marine solar farms. The analysis identifies six high potential areas (i.e., four in the Levantine region and two in the Balearic region), where floating solar farms show the greatest viability. These data provide valuable guidance to investors and policy makers to optimize site selection and investment strategies.

Suggested Citation

  • Filgueira-Vizoso, Almudena & Cordal-Iglesias, David & Fernández-Blanco, Carla & Fernández-Mira, Daniel & García-Diez, Ana Isabel & Castro-Santos, Laura, 2025. "Economic feasibility of floating offshore solar farms. The case of study of the Levantine-Balearic region of Spain," Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225016676
    DOI: 10.1016/j.energy.2025.136025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225016676
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. López, Mario & Claus, Rubén & Soto, Fernando & Hernández-Garrastacho, Zenaida A. & Cebada-Relea, Alejandro & Simancas, Orlando, 2024. "Advancing offshore solar energy generation: The HelioSea concept," Applied Energy, Elsevier, vol. 359(C).
    2. William D. Nordhaus & Joseph G. Boyer, 1999. "Requiem for Kyoto: An Economic Analysis of the Kyoto Protocol," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 93-130.
    3. Sergi Vilajuana Llorente & José Ignacio Rapha & José Luis Domínguez-García, 2024. "Development and Analysis of a Global Floating Wind Levelised Cost of Energy Map," Clean Technol., MDPI, vol. 6(3), pages 1-27, September.
    4. William D. Nordhaus & Joseph G. Boyer, 1999. "Requiem for Kyoto: An Economic Analysis of the Kyoto Protocol," The Energy Journal, , vol. 20(1_suppl), pages 93-130, June.
    5. Sharma, Atul & Chen, C.R. & Vu Lan, Nguyen, 2009. "Solar-energy drying systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1185-1210, August.
    6. C.J., Ramanan & Lim, King Hann & Kurnia, Jundika Candra & Roy, Sukanta & Bora, Bhaskor Jyoti & Medhi, Bhaskar Jyoti, 2024. "Towards sustainable power generation: Recent advancements in floating photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    7. Kitzing, Lena & Mitchell, Catherine & Morthorst, Poul Erik, 2012. "Renewable energy policies in Europe: Converging or diverging?," Energy Policy, Elsevier, vol. 51(C), pages 192-201.
    8. Evangelos E. Pompodakis & Georgios I. Orfanoudakis & Yiannis Katsigiannis & Emmanouel Karapidakis, 2024. "Techno-Economic Feasibility Analysis of an Offshore Wave Power Facility in the Aegean Sea, Greece," Energies, MDPI, vol. 17(18), pages 1-23, September.
    9. Castro-Santos, Laura & Filgueira-Vizoso, Almudena & Carral-Couce, Luis & Formoso, José Ángel Fraguela, 2016. "Economic feasibility of floating offshore wind farms," Energy, Elsevier, vol. 112(C), pages 868-882.
    10. Chellapillai Veliathur Chinnasamy Srinivasan & Prashant Kumar Soori & Fadi A. Ghaith, 2024. "Techno-Economic Feasibility of the Use of Floating Solar PV Systems in Oil Platforms," Sustainability, MDPI, vol. 16(3), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Yujia & Khojasteh, Danial & Windt, Christian & Huang, Luofeng, 2025. "An interdisciplinary literature review of floating solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    2. Makhija, Amandeep Singh & Tiwari, Vivek & Bohra, Shabbir S., 2025. "Evaluating performance-impacting parameters for water-mounted solar PV systems using response surface methodology," Renewable Energy, Elsevier, vol. 244(C).
    3. Doan, Nguyen & Doan, Huong & Nguyen, Canh Phuc & Nguyen, Binh Quang, 2024. "From Kyoto to Paris and beyond: A deep dive into the green shift," Renewable Energy, Elsevier, vol. 228(C).
    4. Carolyn Fischer & Richard D. Morgenstern, 2006. "Carbon Abatement Costs: Why the Wide Range of Estimates?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 73-86.
    5. Choe, Do-Eun & Ramezani, Mahyar, 2025. "Fragility estimation for performance-based structural design of floating offshore wind turbine components," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    6. Jain, Dilip & Tewari, Pratibha, 2015. "Performance of indirect through pass natural convective solar crop dryer with phase change thermal energy storage," Renewable Energy, Elsevier, vol. 80(C), pages 244-250.
    7. Shanka Vasuki, Sathya & Levell, Jack & Santbergen, Rudi & Isabella, Olindo, 2025. "A technical review on the energy yield estimation of offshore floating photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    8. Joseph E. Aldy & Robert N. Stavins, 2021. "Rolling The Dice In The Corridors Of Power: William Nordhaus’S Impacts On Climate Change Policy," World Scientific Book Chapters, in: Robert Mendelsohn (ed.), CLIMATE CHANGE ECONOMICS Commemoration of Nobel Prize for William Nordhaus, chapter 1, pages 1-18, World Scientific Publishing Co. Pte. Ltd..
    9. Frank, Alejandro Germán & Gerstlberger, Wolfgang & Paslauski, Carolline Amaral & Lerman, Laura Visintainer & Ayala, Néstor Fabián, 2018. "The contribution of innovation policy criteria to the development of local renewable energy systems," Energy Policy, Elsevier, vol. 115(C), pages 353-365.
    10. Gustav Resch & Malte Gephart & Simone Steinhilber & Corinna Klessmann & Pablo del Rio & Mario Ragwitz, 2013. "Coordination or Harmonisation? Feasible Pathways for a European Res Strategy beyond 2020," Energy & Environment, , vol. 24(1-2), pages 147-169, February.
    11. Richard G. Newell & William A. Pizer & Daniel Raimi, 2014. "Carbon Markets: Past, Present, and Future," Annual Review of Resource Economics, Annual Reviews, vol. 6(1), pages 191-215, October.
    12. Aviel Verbruggen, 2011. "A Turbo Drive for the Global Reduction of Energy-Related CO 2 Emissions," Sustainability, MDPI, vol. 3(4), pages 1-17, April.
    13. Strunz, Sebastian & Gawel, Erik & Lehmann, Paul & Söderholm, Patrik, 2015. "Policy convergence: A conceptual framework based on lessons from renewable energy policies in the EU," UFZ Discussion Papers 14/2015, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    14. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    15. Lecocq, Franck & Crassous, Renaud, 2003. "International climate regime beyond 2012 - are quota allocation rules robust to uncertainty?," Policy Research Working Paper Series 3000, The World Bank.
    16. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2017. "Economic comparison of technological alternatives to harness offshore wind and wave energies," Energy, Elsevier, vol. 140(P1), pages 1121-1130.
    17. Javier Serrano González & Manuel Burgos Payán & Jesús Manuel Riquelme Santos & Ángel Gaspar González Rodríguez, 2021. "Optimal Micro-Siting of Weathervaning Floating Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-19, February.
    18. Winkler, Ralph, 2009. "Now or Never: Environmental Protection under Hyperbolic Discounting," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-22.
    19. Józef Paska & Tomasz Surma & Paweł Terlikowski & Krzysztof Zagrajek, 2020. "Electricity Generation from Renewable Energy Sources in Poland as a Part of Commitment to the Polish and EU Energy Policy," Energies, MDPI, vol. 13(16), pages 1-31, August.
    20. Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225016676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.