Stochastic peak shaving scenario generation for grid-friendly building energy system design
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2025.135925
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Tian, Zhe & Li, Xiaoyuan & Niu, Jide & Zhou, Ruoyu & Li, Feng, 2024. "Enhancing operation flexibility of distributed energy systems: A flexible multi-objective optimization planning method considering long-term and temporary objectives," Energy, Elsevier, vol. 288(C).
- Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Laibao Liu & Gang He & Mengxi Wu & Gang Liu & Haoran Zhang & Ying Chen & Jiashu Shen & Shuangcheng Li, 2023. "Climate change impacts on planned supply–demand match in global wind and solar energy systems," Nature Energy, Nature, vol. 8(8), pages 870-880, August.
- Notton, G. & Lazarov, V. & Stoyanov, L., 2010. "Optimal sizing of a grid-connected PV system for various PV module technologies and inclinations, inverter efficiency characteristics and locations," Renewable Energy, Elsevier, vol. 35(2), pages 541-554.
- Bakhtiari, Hamed & Zhong, Jin & Alvarez, Manuel, 2021. "Predicting the stochastic behavior of uncertainty sources in planning a stand-alone renewable energy-based microgrid using Metropolis–coupled Markov chain Monte Carlo simulation," Applied Energy, Elsevier, vol. 290(C).
- Hoffmann, Maximilian & Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron & Kotzur, Leander & Stolten, Detlef, 2021. "Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models," Applied Energy, Elsevier, vol. 304(C).
- Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
- Niu, Jide & Li, Xiaoyuan & Tian, Zhe & Yang, Hongxing, 2023. "A framework for quantifying the value of information to mitigate risk in the optimal design of distributed energy systems under uncertainty," Applied Energy, Elsevier, vol. 350(C).
- He, Shuaijia & Gao, Hongjun & Wang, Lingfeng & Xiang, Yingmeng & Liu, Junyong, 2020. "Distributionally robust planning for integrated energy systems incorporating electric-thermal demand response," Energy, Elsevier, vol. 213(C).
- Dong, Jun & Xue, Guiyuan & Li, Rong, 2016. "Demand response in China: Regulations, pilot projects and recommendations – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 13-27.
- Jia, Shuning & Sheng, Kai & Huang, Dehai & Hu, Kai & Xu, Yizhe & Yan, Chengchu, 2023. "Design optimization of energy systems for zero energy buildings based on grid-friendly interaction with smart grid," Energy, Elsevier, vol. 284(C).
- Liu, Zuming & Zhao, Yingru & Wang, Xiaonan, 2020. "Long-term economic planning of combined cooling heating and power systems considering energy storage and demand response," Applied Energy, Elsevier, vol. 279(C).
- Yang, Xiaohui & Chen, Zaixing & Huang, Xin & Li, Ruixin & Xu, Shaoping & Yang, Chunsheng, 2021. "Robust capacity optimization methods for integrated energy systems considering demand response and thermal comfort," Energy, Elsevier, vol. 221(C).
- Lu, Yakai & Peng, Xingyu & Li, Conghui & Tian, Zhe & Kong, Xiangfei & Niu, Jide, 2025. "Few-sample model training assistant: A meta-learning technique for building heating load forecasting based on simulation data," Energy, Elsevier, vol. 317(C).
- Zhu, Jie & Niu, Jide & Tian, Zhe & Zhou, Ruoyu & Ye, Chuang, 2022. "Rapid quantification of demand response potential of building HAVC system via data-driven model," Applied Energy, Elsevier, vol. 325(C).
- Tian, Zhe & Lu, Zhonghui & Lu, Yakai & Zhang, Qiang & Lin, Xinyi & Niu, Jide, 2024. "An unsupervised data mining-based framework for evaluation and optimization of operation strategy of HVAC system," Energy, Elsevier, vol. 291(C).
- Tian, Zhe & Wang, Yi & Li, Xiaoyuan & Wen, Li & Niu, Jide & Lu, Yakai, 2024. "Typical daily scenario extraction method based on key features to promote building renewable energy system optimization efficiency," Renewable Energy, Elsevier, vol. 236(C).
- Niu, Jide & Tian, Zhe & Yue, Lu, 2020. "Robust optimal design of building cooling sources considering the uncertainty and cross-correlation of demand and source," Applied Energy, Elsevier, vol. 265(C).
- A. T. D. Perera & Vahid M. Nik & Deliang Chen & Jean-Louis Scartezzini & Tianzhen Hong, 2020. "Quantifying the impacts of climate change and extreme climate events on energy systems," Nature Energy, Nature, vol. 5(2), pages 150-159, February.
- Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Design of distributed energy systems under uncertainty: A two-stage stochastic programming approach," Applied Energy, Elsevier, vol. 222(C), pages 932-950.
- Mansouri, Seyed Amir & Ahmarinejad, Amir & Javadi, Mohammad Sadegh & Catalão, João P.S., 2020. "Two-stage stochastic framework for energy hubs planning considering demand response programs," Energy, Elsevier, vol. 206(C).
- Yue, Lu & Niu, Jide & Tian, Zhe & Lin, Quanyi & Lu, Yakai, 2024. "A simplified assessment method based on Hooke's law to estimate the grid-friendly ability of buildings," Renewable Energy, Elsevier, vol. 223(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Xiaoyuan & Tian, Zhe & Wu, Xia & Feng, Wei & Niu, Jide, 2024. "Optimal planning for hybrid renewable energy systems under limited information based on uncertainty quantification," Renewable Energy, Elsevier, vol. 237(PD).
- Perera, A.T.D. & Khayatian, F. & Eggimann, S. & Orehounig, K. & Halgamuge, Saman, 2022. "Quantifying the climate and human-system-driven uncertainties in energy planning by using GANs," Applied Energy, Elsevier, vol. 328(C).
- Niu, Jide & Li, Xiaoyuan & Tian, Zhe & Yang, Hongxing, 2023. "A framework for quantifying the value of information to mitigate risk in the optimal design of distributed energy systems under uncertainty," Applied Energy, Elsevier, vol. 350(C).
- Niu, Jide & Li, Xiaoyuan & Tian, Zhe & Yang, Hongxing, 2024. "Uncertainty analysis of the electric vehicle potential for a household to enhance robustness in decision on the EV/V2H technologies," Applied Energy, Elsevier, vol. 365(C).
- Wu, Jiani & Fan, Jianhua & Ma, Tianzeng & Kong, Weiqiang & Chang, Zheshao & Li, Xin, 2024. "Identifying driving factors in cascaded packed bed latent thermal energy storage: An experimental validation," Renewable Energy, Elsevier, vol. 224(C).
- Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Tian, Zhe & Li, Xiaoyuan & Niu, Jide & Zhou, Ruoyu & Li, Feng, 2024. "Enhancing operation flexibility of distributed energy systems: A flexible multi-objective optimization planning method considering long-term and temporary objectives," Energy, Elsevier, vol. 288(C).
- Lu, M.L. & Sun, Y.J. & Kokogiannakis, G. & Ma, Z.J., 2024. "Design of flexible energy systems for nearly/net zero energy buildings under uncertainty characteristics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
- Azimian, Mahdi & Amir, Vahid & Mohseni, Soheil & Brent, Alan C. & Bazmohammadi, Najmeh & Guerrero, Josep M., 2022. "Optimal Investment Planning of Bankable Multi-Carrier Microgrid Networks," Applied Energy, Elsevier, vol. 328(C).
- Zhang, Jiyuan & Tang, Hailong & Chen, Min, 2019. "Linear substitute model-based uncertainty analysis of complicated non-linear energy system performance (case study of an adaptive cycle engine)," Applied Energy, Elsevier, vol. 249(C), pages 87-108.
- Yan, Rujing & Wang, Jiangjiang & Wang, Jiahao & Tian, Lei & Tang, Saiqiu & Wang, Yuwei & Zhang, Jing & Cheng, Youliang & Li, Yuan, 2022. "A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties," Energy, Elsevier, vol. 247(C).
- G., Varathan & J., Belwin Edward, 2024. "A review of uncertainty management approaches for active distribution system planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
- Wang, Jing & Ye, Kai & Kang, Lixia & Liu, Yongzhong, 2024. "Flexible design of renewable hydrogen production systems through identifying bottlenecks under uncertainty," Energy, Elsevier, vol. 311(C).
- Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Tian, Zhe & Wang, Yi & Li, Xiaoyuan & Wen, Li & Niu, Jide & Lu, Yakai, 2024. "Typical daily scenario extraction method based on key features to promote building renewable energy system optimization efficiency," Renewable Energy, Elsevier, vol. 236(C).
- Zhang, Xiaoyi & Liu, Yan & Li, Yanxue & Lv, Xiaoyu & Xiao, Fu & Gao, Weijun, 2024. "Analyzing variability and coordinated demand management for various flexible integrations of residential distributed energy resources," Renewable Energy, Elsevier, vol. 237(PA).
- Thomas T. D. Tran & Amanda D. Smith, 2019. "Stochastic Optimization for Integration of Renewable Energy Technologies in District Energy Systems for Cost-Effective Use," Energies, MDPI, vol. 12(3), pages 1-26, February.
- Perera, A.T.D. & Wickramasinghe, P.U. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2019. "Machine learning methods to assist energy system optimization," Applied Energy, Elsevier, vol. 243(C), pages 191-205.
- Zhang, Chong & Xue, Xue & Du, Qianzhou & Luo, Yimo & Gang, Wenjie, 2019. "Study on the performance of distributed energy systems based on historical loads considering parameter uncertainties for decision making," Energy, Elsevier, vol. 176(C), pages 778-791.
- Perera, A.T.D. & Zhao, Bingyu & Wang, Zhe & Soga, Kenichi & Hong, Tianzhen, 2023. "Optimal design of microgrids to improve wildfire resilience for vulnerable communities at the wildland-urban interface," Applied Energy, Elsevier, vol. 335(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225015671. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/energy/v324y2025ics0360544225015671.html