IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v324y2025ics0360544225014781.html
   My bibliography  Save this article

Co-optimized operation of electrified transportation systems considering mixed human and automated traffic flows

Author

Listed:
  • Li, Jia
  • Li, Bin
  • Liu, Zhitao
  • Su, Hongye

Abstract

With the rapid advancement of autonomous driving technology, autonomous vehicles (AVs) are increasingly integrated into everyday transportation. However, the centralized control characteristic of AVs adds complexity to the interaction between the transportation network (TN) and the power distribution network (PDN) in electrified transportation systems (ETSs), which, in turn, affects the operational costs of ETSs. While substantial progress has been made in the co-optimization of TN and PDN, further research is necessary to develop optimization models that consider the characteristics of AVs and human-driven vehicles (HVs). This study presents a multi-period co-optimization model to optimize ETSs that incorporate AVs. In this model, AVs operate according to the system optimal (SO) principle, while HVs follow the user equilibrium (UE) principle. By transforming the problem into an equivalent optimization model and using a piecewise linear approximation method, the original nonlinear complementarity problem is reformulated as a mixed-integer linear programming problem, thereby improving its tractability. To enhance social welfare and improve the stability of the PDN, a bidirectional differential charging price (BDCP) scheme is introduced. This scheme independently manages charging prices for bi-directional traffic flows on the same road segment. Additionally, the PDN, which incorporates renewable energy sources, is modeled as an alternating current optimal power flow problem with second-order cone programming relaxation. An iterative method is developed to jointly optimize traffic distribution and optimal power flow. Simulation results on two test systems validate the proposed model’s effectiveness and advantages.

Suggested Citation

  • Li, Jia & Li, Bin & Liu, Zhitao & Su, Hongye, 2025. "Co-optimized operation of electrified transportation systems considering mixed human and automated traffic flows," Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225014781
    DOI: 10.1016/j.energy.2025.135836
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225014781
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135836?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Zhe & Zhang, Xuan & Guo, Qinglai & Sun, Hongbin, 2021. "Analyzing power and dynamic traffic flows in coupled power and transportation networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Mubarak, Mamdouh & Üster, Halit & Abdelghany, Khaled & Khodayar, Mohammad, 2021. "Strategic network design and analysis for in-motion wireless charging of electric vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    3. Pan, Yuchen & Wu, Yu & Xu, Lu & Xia, Chengyi & Olson, David L., 2024. "The impacts of connected autonomous vehicles on mixed traffic flow: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    4. Ye, Lanhang & Yamamoto, Toshiyuki, 2018. "Modeling connected and autonomous vehicles in heterogeneous traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 269-277.
    5. He, Fang & Wu, Di & Yin, Yafeng & Guan, Yongpei, 2013. "Optimal deployment of public charging stations for plug-in hybrid electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 87-101.
    6. Chen, Yuanyi & Zheng, Yanchong & Hu, Simon & Xie, Shiwei & Yang, Qiang, 2024. "Risk-averse energy dispatch for hybrid energy refueling stations considering Boundedly rational mixed user equilibrium and operational uncertainties," Applied Energy, Elsevier, vol. 376(PA).
    7. Liu, Haoxiang & Zou, Yuncheng & Chen, Ya & Long, Jiancheng, 2021. "Optimal locations and electricity prices for dynamic wireless charging links of electric vehicles for sustainable transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    8. Chen, Zhibin & He, Fang & Yin, Yafeng & Du, Yuchuan, 2017. "Optimal design of autonomous vehicle zones in transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 44-61.
    9. Chen, Zhibin & He, Fang & Yin, Yafeng, 2016. "Optimal deployment of charging lanes for electric vehicles in transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 344-365.
    10. Chen, Yuanyi & Hu, Simon & Zheng, Yanchong & Xie, Shiwei & Hu, Qinru & Yang, Qiang, 2024. "Coordinated expansion planning of coupled power and transportation networks considering dynamic network equilibrium," Applied Energy, Elsevier, vol. 360(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Zhen & Liu, Fan & Chan, Hing Kai & Gao, H. Oliver, 2022. "Transportation systems management considering dynamic wireless charging electric vehicles: Review and prospects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    2. Liu, Shaojun & Wang, David Z.W. & Tian, Qingyun & Lin, Yun Hui, 2024. "Optimal configuration of dynamic wireless charging facilities considering electric vehicle battery capacity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    3. Yudai Honma & Daisuke Hasegawa & Katsuhiro Hata & Takashi Oguchi, 2024. "Locational Analysis of In-motion Wireless Power Transfer System for Long-distance Trips by Electric Vehicles: Optimal Locations and Economic Rationality in Japanese Expressway Network," Networks and Spatial Economics, Springer, vol. 24(1), pages 261-290, March.
    4. Shi, Jie & Gao, H. Oliver, 2022. "Efficient energy management of wireless charging roads with energy storage for coupled transportation–power systems," Applied Energy, Elsevier, vol. 323(C).
    5. Park, Junseok & Moon, Ilkyeong, 2023. "A facility location problem in a mixed duopoly on networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    6. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    7. Chen, Yuanyi & Hu, Simon & Zheng, Yanchong & Xie, Shiwei & Hu, Qinru & Yang, Qiang, 2024. "Coordinated expansion planning of coupled power and transportation networks considering dynamic network equilibrium," Applied Energy, Elsevier, vol. 360(C).
    8. Hao, Yilang & Chen, Zhibin & Sun, Xiaotong & Tong, Lu, 2025. "Planning of truck platooning for road-network capacitated vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
    9. Liu, Haoxiang & Wang, David Z.W., 2017. "Locating multiple types of charging facilities for battery electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 30-55.
    10. Zhaoming Zhou & Jianbo Yuan & Shengmin Zhou & Qiong Long & Jianrong Cai & Lei Zhang, 2023. "Modeling and Analysis of Driving Behaviour for Heterogeneous Traffic Flow Considering Market Penetration under Capacity Constraints," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    11. Song, Jiatong & Li, Baicheng & Szeto, W.Y. & Zhan, Xingbin, 2024. "A station location design problem in a bike-sharing system with both conventional and electric shared bikes considering bike users’ roaming delay costs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    12. Lingshu Zhong & Mingyang Pei, 2020. "Optimal Design for a Shared Swap Charging System Considering the Electric Vehicle Battery Charging Rate," Energies, MDPI, vol. 13(5), pages 1-16, March.
    13. Ye, Lanhang & Yamamoto, Toshiyuki, 2018. "Impact of dedicated lanes for connected and autonomous vehicle on traffic flow throughput," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 588-597.
    14. Van Can Nguyen & Chi-Tai Wang & Ying-Jiun Hsieh, 2021. "Electrification of Highway Transportation with Solar and Wind Energy," Sustainability, MDPI, vol. 13(10), pages 1-28, May.
    15. Li, Bin & Li, Jia & Liu, Zhitao & Su, Hongye, 2025. "Network equilibrium of a transportation-power distribution coupled system: A Stackelberg–Nash game model," Renewable Energy, Elsevier, vol. 241(C).
    16. Cen, Xuekai & Lo, Hong K. & Li, Lu & Lee, Enoch, 2018. "Modeling electric vehicles adoption for urban commute trips," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 431-454.
    17. Guo, Ning & Jiang, Changmin & Guo, Liquan & Ling, Xiang & Wu, Chaoyun & Hao, Qingyi, 2025. "Wireless charging facility location decision in the context of microscopic traffic dynamics," Transport Policy, Elsevier, vol. 160(C), pages 107-115.
    18. Liu, Haoxiang & Zou, Yuncheng & Chen, Ya & Long, Jiancheng, 2021. "Optimal locations and electricity prices for dynamic wireless charging links of electric vehicles for sustainable transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    19. Shi, Haojie & Xiong, Houbo & Gan, Wei & Lin, Yumian & Guo, Chuangxin, 2025. "Fully distributed planning method for coordinated distribution and urban transportation networks considering three-phase unbalance mitigation," Applied Energy, Elsevier, vol. 377(PA).
    20. Wang, Hua & Meng, Qiang & Wang, Jing & Zhao, De, 2021. "An electric-vehicle corridor model in a dense city with applications to charging location and traffic management," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 79-99.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225014781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.