IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v322y2025ics0360544225013222.html
   My bibliography  Save this article

Multi-objective optimization of an off-grid CAES-based cogeneration plant for quad-generation

Author

Listed:
  • Davoodi, Vajihe
  • Amiri Rad, Ehsan
  • Haghighat, Fariborz
  • Simonson, Carey J.
  • Ting, David S-K

Abstract

This study presents a pioneering solar-wind system integrated with a compressed air energy storage (CAES) cycle, designed to provide heating, cooling, power, and fresh water in an off-grid setting. The system's performance is optimized through a multi-objective analysis, considering energy efficiency, total income, and water production. Hourly ambient temperature variations are accounted for to determine the system's annual performance. Considering the changes in the stored compressed air over time, the maximum capacity of the cycle to produce a steady hourly cooling load is obtained at several pressure ratios. Results show that optimal pressure ratios maximize specific objectives: 11.75 for cooling load, 5.75 for electrical power output, and 9 for energy efficiency. A comprehensive optimal pressure ratio is achieved using the TOPSIS multi-objective optimization method, considering weighted parameters. This innovative system offers a sustainable solution for remote or grid-constrained areas, demonstrating the potential for efficient, multi-generation energy systems.

Suggested Citation

  • Davoodi, Vajihe & Amiri Rad, Ehsan & Haghighat, Fariborz & Simonson, Carey J. & Ting, David S-K, 2025. "Multi-objective optimization of an off-grid CAES-based cogeneration plant for quad-generation," Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225013222
    DOI: 10.1016/j.energy.2025.135680
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225013222
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Xiao & Hu, Weihao & Cao, Di & Huang, Qi & Chen, Cong & Chen, Zhe, 2020. "Optimized sizing of a standalone PV-wind-hydropower station with pumped-storage installation hybrid energy system," Renewable Energy, Elsevier, vol. 147(P1), pages 1418-1431.
    2. Zulfiqar Ali Baloch & Qingmei Tan & Hafiz Waqas Kamran & Muhammad Atif Nawaz & Gadah Albashar & Javaria Hameed, 2022. "A multi-perspective assessment approach of renewable energy production: policy perspective analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2164-2192, February.
    3. Davoodi, Vajihe & Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan, 2022. "Presenting a power and cascade cooling cycle driven using solar energy and natural gas," Renewable Energy, Elsevier, vol. 186(C), pages 802-813.
    4. Mao, Ning & Song, Mengjie & Pan, Dongmei & Deng, Shiming, 2018. "Comparative studies on using RSM and TOPSIS methods to optimize residential air conditioning systems," Energy, Elsevier, vol. 144(C), pages 98-109.
    5. Yang, Xuqing & Yang, Shanju & Wang, Haitao & Yu, Zhenzhu & Liu, Zhan & Zhang, Weifeng, 2022. "Parametric assessment, multi-objective optimization and advanced exergy analysis of a combined thermal-compressed air energy storage with an ejector-assisted Kalina cycle," Energy, Elsevier, vol. 239(PC).
    6. Tayyeban, Edris & Deymi-Dashtebayaz, Mahdi & Gholizadeh, Mohammad, 2021. "Investigation of a new heat recovery system for simultaneously producing power, cooling and distillate water," Energy, Elsevier, vol. 229(C).
    7. Hekmatshoar, Maziyar & Deymi-Dashtebayaz, Mahdi & Gholizadeh, Mohammad & Dadpour, Daryoush & Delpisheh, Mostafa, 2022. "Thermoeconomic analysis and optimization of a geothermal-driven multi-generation system producing power, freshwater, and hydrogen," Energy, Elsevier, vol. 247(C).
    8. Sarmast, Sepideh & Rouindej, Kamyar & Fraser, Roydon A. & Dusseault, Maurice B., 2024. "Optimizing near-adiabatic compressed air energy storage (NA-CAES) systems: Sizing and design considerations," Applied Energy, Elsevier, vol. 357(C).
    9. Nikitin, Andrey & Farahnak, Mehdi & Deymi-Dashtebayaz, Mahdi & Muraveinikov, Sergei & Nikitina, Veronika & Nazeri, Reza, 2022. "Effect of ice thickness and snow cover depth on performance optimization of ground source heat pump based on the energy, exergy, economic and environmental analysis," Renewable Energy, Elsevier, vol. 185(C), pages 1301-1317.
    10. Bazdar, Elaheh & Sameti, Mohammad & Nasiri, Fuzhan & Haghighat, Fariborz, 2022. "Compressed air energy storage in integrated energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    12. Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan, 2020. "Optimization of an improved power cycle for geothermal applications in Iran," Energy, Elsevier, vol. 209(C).
    13. Manzoni, Matteo & Patti, Alberto & Maccarini, Simone & Traverso, Alberto, 2022. "Analysis and comparison of innovative large scale thermo-mechanical closed cycle energy storages," Energy, Elsevier, vol. 249(C).
    14. Zhao, Jin & Patwary, Ataul Karim & Qayyum, Abdul & Alharthi, Majed & Bashir, Furrukh & Mohsin, Muhammad & Hanif, Imran & Abbas, Qaiser, 2022. "The determinants of renewable energy sources for the fueling of green and sustainable economy," Energy, Elsevier, vol. 238(PC).
    15. Davoodi, Vajihe & Amiri Rad, Ehsan & Akhoundi, Mahla & Eicker, Ursula, 2024. "Design, optimization, and performance analysis of a solar-wind powered compression chiller with built-in energy storage system for sustainable cooling in remote areas," Energy, Elsevier, vol. 312(C).
    16. Du, Ruxue & He, Yang & Chen, Haisheng & Xu, Yujie & Li, Wen & Deng, Jianqiang, 2022. "Performance and economy of trigenerative adiabatic compressed air energy storage system based on multi-parameter analysis," Energy, Elsevier, vol. 238(PA).
    17. Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan & Simonson, Carey James, 2022. "Designing and thermodynamic optimization of a novel combined absorption cooling and power cycle based on a water-ammonia mixture," Energy, Elsevier, vol. 253(C).
    18. Bazdar, Elaheh & Nasiri, Fuzhan & Haghighat, Fariborz, 2024. "Resilience-centered optimal sizing and scheduling of a building-integrated PV-based energy system with hybrid adiabatic-compressed air energy storage and battery systems," Energy, Elsevier, vol. 308(C).
    19. Kheir Abadi, Majid & Davoodi, Vajihe & Deymi-Dashtebayaz, Mahdi & Ebrahimi-Moghadam, Amir, 2023. "Determining the best scenario for providing electrical, cooling, and hot water consuming of a building with utilizing a novel wind/solar-based hybrid system," Energy, Elsevier, vol. 273(C).
    20. Liu, Jin-Long & Wang, Jian-Hua, 2015. "Thermodynamic analysis of a novel tri-generation system based on compressed air energy storage and pneumatic motor," Energy, Elsevier, vol. 91(C), pages 420-429.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kheir Abadi, Majid & Davoodi, Vajihe & Deymi-Dashtebayaz, Mahdi & Ebrahimi-Moghadam, Amir, 2023. "Determining the best scenario for providing electrical, cooling, and hot water consuming of a building with utilizing a novel wind/solar-based hybrid system," Energy, Elsevier, vol. 273(C).
    2. Davoodi, Vajihe & Amiri Rad, Ehsan & Akhoundi, Mahla & Eicker, Ursula, 2024. "Design, optimization, and performance analysis of a solar-wind powered compression chiller with built-in energy storage system for sustainable cooling in remote areas," Energy, Elsevier, vol. 312(C).
    3. Assareh, Ehsanolah & Kazemiani-Najafabadi, Parisa & Rad, Ehsan Amiri & Arabkoohsar, Ahmad, 2023. "Optimization of a trigeneration cooling, heating, and power system with low-temperature waste heat from 4E points of view," Energy, Elsevier, vol. 283(C).
    4. Deymi-Dashtebayaz, Mahdi & Davoodi, Vajihe & Khutornaya, Julia & Sergienko, Olga, 2023. "Parametric analysis and multi-objective optimization of a heat pump dryer based on working conditions and using different refrigerants," Energy, Elsevier, vol. 284(C).
    5. Ghorbani, Sobhan & Deymi-Dashtebayaz, Mahdi & Dadpour, Daryoush & Delpisheh, Mostafa, 2023. "Parametric study and optimization of a novel geothermal-driven combined cooling, heating, and power (CCHP) system," Energy, Elsevier, vol. 263(PF).
    6. Alipour, Mehran & Deymi-Dashtebayaz, Mahdi & Asadi, Mostafa, 2023. "Investigation of energy, exergy, and economy of co-generation system of solar electricity and cooling using linear parabolic collector for a data center," Energy, Elsevier, vol. 279(C).
    7. Assareh, Ehsanolah & Hoseinzadeh, Siamak & Agarwal, Saurabh & keykhah, Mohammad & Agarwal, Neha & Heydari, Azim & Astiaso Garcia, Davide, 2025. "Assessment of a wind energy installation for powering a residential building in Rome, Italy: Incorporating wind turbines, compressed air energy storage, and a compression chiller based on a machine le," Energy, Elsevier, vol. 320(C).
    8. Faramarzi, Saman & Gharanli, Sajjad & Ramazanzade Mohammadi, Mohsen & Rahimtabar, Amin & J. Chamkha, Ali, 2023. "Energy, exergy, and economic analysis of an innovative hydrogen liquefaction cycle integrated into an absorption refrigeration system and geothermal energy," Energy, Elsevier, vol. 282(C).
    9. Bazdar, Elaheh & Nasiri, Fuzhan & Haghighat, Fariborz, 2024. "Resilience-centered optimal sizing and scheduling of a building-integrated PV-based energy system with hybrid adiabatic-compressed air energy storage and battery systems," Energy, Elsevier, vol. 308(C).
    10. Xue, Xiaojun & Lv, Jiayang & Chen, Heng & Xu, Gang & Li, Qiubai, 2022. "Thermodynamic and economic analyses of a new compressed air energy storage system incorporated with a waste-to-energy plant and a biogas power plant," Energy, Elsevier, vol. 261(PB).
    11. Xu, Yonghong & Fang, Juan & Zhang, Hongguang & Song, Songsong & Tong, Liang & Peng, Baoying & Yang, Fubin, 2025. "Experimental investigation on the output performance of a micro compressed air energy storage system based on a scroll expander," Renewable Energy, Elsevier, vol. 243(C).
    12. Deymi-Dashtebayaz, Mahdi & Kheir Abadi, Majid & Asadi, Mostafa & Khutornaya, Julia & Sergienko, Olga, 2024. "Investigation of a new solar-wind energy-based heat pump dryer for food waste drying based on different weather conditions," Energy, Elsevier, vol. 290(C).
    13. Ghavami, Morteza & Gholizadeh, Mohammad & Deymi-Dashtebayaz, Mahdi, 2023. "Parametric study and optimization analysis of a multi-generation system using waste heat in natural gas refinery- an energy and exergoeconomic analysis," Energy, Elsevier, vol. 272(C).
    14. Xue, Xiaojun & Li, Yang & Liu, Shugen & Xu, Gang & Zheng, Lixing, 2024. "Performance analysis of a new compressed air energy storage system coupled with the municipal solid waste power generation systems," Energy, Elsevier, vol. 304(C).
    15. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    16. Lin, Mengke & Shen, Jianjian & Guo, Xihai & Ge, Linsong & Lü, Quan, 2025. "Comparison of pumping station and electrochemical energy storage enhancement mode for hydro-wind-photovoltaic hybrid systems," Energy, Elsevier, vol. 315(C).
    17. Li, Bo & Xu, Hongpeng & Jiang, Yuemao & Wu, Chuang & Wang, Shun-sen, 2025. "Energy, exergy, economic and exergoeconomic (4E) analysis of a high-temperature liquid CO2 energy storage system: Dual-stage thermal energy storage for performance enhancement," Renewable Energy, Elsevier, vol. 239(C).
    18. Chen, Hao & Wang, Huanran & Li, Ruixiong & Sun, Hao & Zhang, Yufei & Ling, Lanning, 2023. "Thermo-dynamic and economic analysis of a novel pumped hydro-compressed air energy storage system combined with compressed air energy storage system as a spray system," Energy, Elsevier, vol. 280(C).
    19. Sun, Yunpeng & Tian, Wenjuan & Mehmood, Usman & Zhang, Xiaoyu & Tariq, Salman, 2023. "How do natural resources, urbanization, and institutional quality meet with ecological footprints in the presence of income inequality and human capital in the next eleven countries?," Resources Policy, Elsevier, vol. 85(PA).
    20. Skroufouta, S. & Baltas, E., 2021. "Investigation of hybrid renewable energy system (HRES) for covering energy and water needs on the Island of Karpathos in Aegean Sea," Renewable Energy, Elsevier, vol. 173(C), pages 141-150.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225013222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.