IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v249y2022ics0360544222005321.html
   My bibliography  Save this article

Analysis and comparison of innovative large scale thermo-mechanical closed cycle energy storages

Author

Listed:
  • Manzoni, Matteo
  • Patti, Alberto
  • Maccarini, Simone
  • Traverso, Alberto

Abstract

In recent years, large installations of renewable power generators have contributed to reduce emissions from fossil sources. Nevertheless, the main features of renewable sources are the unpredictability and the non-dispatchability, exacerbating problems of power balancing for the electrical grid. In such a context, it is essential to investigate innovative energy storage systems, both at small and large scale, to maintain the high quality level of current electrical infrastructure and to guarantee spinning-reserve capability, thus ensuring grid stability. Closed-loop systems for thermo-mechanical energy storage based on rotating machinery could be a solution to achieve this goal. Basing on the state of the art and growing knowledge of CO2 cycles for power production, this paper aims to analyze innovative energy storage solutions involving closed cycles, employing different working fluids in subcritical or supercritical conditions, including CO2, N2O and SF6. Moreover, also H2O was treated as an evolving fluid for benchmark. Such various plant configurations have been sized for a net power level of 10 MWe during charging phase, considering the same charging (compression mode) and discharging (expansion mode) phase duration of 4 h. Their techno-economic features have been compared: Round Trip Efficiency (RTE) greater than 70% is achieved, demonstrating the potential of such plants as utility scale energy storage. Among the different working fluids considered, CO2 in supercritical conditions achieves the best RTE performance.

Suggested Citation

  • Manzoni, Matteo & Patti, Alberto & Maccarini, Simone & Traverso, Alberto, 2022. "Analysis and comparison of innovative large scale thermo-mechanical closed cycle energy storages," Energy, Elsevier, vol. 249(C).
  • Handle: RePEc:eee:energy:v:249:y:2022:i:c:s0360544222005321
    DOI: 10.1016/j.energy.2022.123629
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222005321
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steinmann, Wolf-Dieter & Bauer, Dan & Jockenhöfer, Henning & Johnson, Maike, 2019. "Pumped thermal energy storage (PTES) as smart sector-coupling technology for heat and electricity," Energy, Elsevier, vol. 183(C), pages 185-190.
    2. Guelpa, Elisa & Verda, Vittorio, 2020. "Exergoeconomic analysis for the design improvement of supercritical CO2 cycle in concentrated solar plant," Energy, Elsevier, vol. 206(C).
    3. Luu, Minh Tri & Milani, Dia & McNaughton, Robbie & Abbas, Ali, 2017. "Analysis for flexible operation of supercritical CO2 Brayton cycle integrated with solar thermal systems," Energy, Elsevier, vol. 124(C), pages 752-771.
    4. Jidai Wang & Kunpeng Lu & Lan Ma & Jihong Wang & Mark Dooner & Shihong Miao & Jian Li & Dan Wang, 2017. "Overview of Compressed Air Energy Storage and Technology Development," Energies, MDPI, vol. 10(7), pages 1-22, July.
    5. Carro, A. & Chacartegui, R. & Ortiz, C. & Carneiro, J. & Becerra, J.A., 2022. "Integration of energy storage systems based on transcritical CO2: Concept of CO2 based electrothermal energy and geological storage," Energy, Elsevier, vol. 238(PA).
    6. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2021. "Load matching and techno-economic analysis of CSP plant with S–CO2 Brayton cycle in CSP-PV-wind hybrid system," Energy, Elsevier, vol. 223(C).
    7. Mahmood, Mariam & Traverso, Alberto & Traverso, Alberto Nicola & Massardo, Aristide F. & Marsano, Davide & Cravero, Carlo, 2018. "Thermal energy storage for CSP hybrid gas turbine systems: Dynamic modelling and experimental validation," Applied Energy, Elsevier, vol. 212(C), pages 1240-1251.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Longxiang & Zhang, Liugan & Yang, Huipeng & Xie, Meina & Ye, Kai, 2022. "Dynamic simulation of a Re-compressed adiabatic compressed air energy storage (RA-CAES) system," Energy, Elsevier, vol. 261(PB).
    2. Mohammadali Kiehbadroudinezhad & Adel Merabet & Homa Hosseinzadeh-Bandbafha, 2022. "Review of Latest Advances and Prospects of Energy Storage Systems: Considering Economic, Reliability, Sizing, and Environmental Impacts Approach," Clean Technol., MDPI, vol. 4(2), pages 1-25, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2022. "A review on integrated design and off-design operation of solar power tower system with S–CO2 Brayton cycle," Energy, Elsevier, vol. 246(C).
    2. Yang, Jing & Zhang, Zhiyong & Hong, Ming & Yang, Mingwan & Chen, Jiayu, 2020. "An oligarchy game model for the mobile waste heat recovery energy supply chain," Energy, Elsevier, vol. 210(C).
    3. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    4. Ameen, Muhammad Tahir & Ma, Zhiwei & Smallbone, Andrew & Norman, Rose & Roskilly, Anthony Paul, 2023. "Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency," Applied Energy, Elsevier, vol. 333(C).
    5. Merad, Faycel & Labar, Hocine & Samira KELAIAIA, Mounia & Necaibia, Salah & Djelailia, Okba, 2019. "A maximum power control based on flexible collector applied to concentrator solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 315-331.
    6. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    7. Dzido, Aleksandra & Krawczyk, Piotr & Wołowicz, Marcin & Badyda, Krzysztof, 2022. "Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications," Renewable Energy, Elsevier, vol. 184(C), pages 727-739.
    8. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
    9. Giostri, A. & Binotti, M. & Sterpos, C. & Lozza, G., 2020. "Small scale solar tower coupled with micro gas turbine," Renewable Energy, Elsevier, vol. 147(P1), pages 570-583.
    10. He, Jintao & Shi, Lingfeng & Tian, Hua & Wang, Xuan & Zhang, Yonghao & Zhang, Meiyan & Yao, Yu & Cai, Jinwen & Shu, Gequn, 2022. "Control strategy for a CO2-based combined cooling and power generation system based on heat source and cold sink fluctuations," Energy, Elsevier, vol. 257(C).
    11. Koide, Hiroaki & Kurniawan, Ade & Takahashi, Tatsuya & Kawaguchi, Takahiro & Sakai, Hiroki & Sato, Yusuke & Chiu, Justin NW. & Nomura, Takahiro, 2022. "Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material," Energy, Elsevier, vol. 238(PC).
    12. Duniam, Sam & Veeraragavan, Ananthanarayanan, 2019. "Off-design performance of the supercritical carbon dioxide recompression Brayton cycle with NDDCT cooling for concentrating solar power," Energy, Elsevier, vol. 187(C).
    13. Liu, Hongtao & Zhai, Rongrong & Patchigolla, Kumar & Turner, Peter & Yu, Xiaohan & Wang, Peng, 2023. "Multi-objective optimisation of a thermal-storage PV-CSP-wind hybrid power system in three operation modes," Energy, Elsevier, vol. 284(C).
    14. King, Marcus & Jain, Anjali & Bhakar, Rohit & Mathur, Jyotirmay & Wang, Jihong, 2021. "Overview of current compressed air energy storage projects and analysis of the potential underground storage capacity in India and the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    15. Chen, Jinli & Xiao, Gang & Ferrari, Mario Luigi & Yang, Tianfeng & Ni, Mingjiang & Cen, Kefa, 2020. "Dynamic simulation of a solar-hybrid microturbine system with experimental validation of main parts," Renewable Energy, Elsevier, vol. 154(C), pages 187-200.
    16. Xue, X.J. & Zhao, C.Y., 2023. "Transient behavior and thermodynamic analysis of Brayton-like pumped-thermal electricity storage based on packed-bed latent heat/cold stores," Applied Energy, Elsevier, vol. 329(C).
    17. Moez Krichen & Yasir Basheer & Saeed Mian Qaisar & Asad Waqar, 2023. "A Survey on Energy Storage: Techniques and Challenges," Energies, MDPI, vol. 16(5), pages 1-29, February.
    18. Hunt, Julian David & Zakeri, Behnam & Falchetta, Giacomo & Nascimento, Andreas & Wada, Yoshihide & Riahi, Keywan, 2020. "Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and long-term storage technologies," Energy, Elsevier, vol. 190(C).
    19. Pandey, V. & Kumar, P. & Dutta, P., 2020. "Thermo-hydraulic analysis of compact heat exchanger for a simple recuperated sCO2 Brayton cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    20. Scharrer, Daniel & Bazan, Peter & Pruckner, Marco & German, Reinhard, 2022. "Simulation and analysis of a Carnot Battery consisting of a reversible heat pump/organic Rankine cycle for a domestic application in a community with varying number of houses," Energy, Elsevier, vol. 261(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:249:y:2022:i:c:s0360544222005321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.