IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225011132.html
   My bibliography  Save this article

Parametric analysis of water-saturated porous clay structures as evaporative cooling of building integrated photovoltaic systems

Author

Listed:
  • Ali, Mustafa Ghazali
  • Hassan, Hamdy
  • Nada, Sameh A.

Abstract

Passive cooling of photovoltaic systems has been demonstrated to enhance their electrical performance at cost-effective methods. Among passive mechanisms, evaporative cooling stands out, particularly when utilizing water-saturated porous structures. This study explores the parametric analysis of a porous clay structure as an evaporative cooler for building integrated photovoltaic (BIPV) systems. It examines key parameters such as water saturation levels and meteorological conditions, including wind velocity and relative humidity, assessing their influence on system's cooling performance. A numerical heat and mass transport model, along with the evaporation model based on energy balance principle were presented and solved for this purpose. Further, experimental evaluation of material variations was conducted utilizing hollow porous clay and traditional hollow red brick structures, concurrently validating the numerical model. The experimental results highlight significant improvements, with a 6 % reduction in peak PV temperature observed when using a porous clay structure compared to conventional red bricks. The parametric study further revealed a maximum 9.7 % reduction in peak PV temperature at higher water saturation levels. Notably, PV electrical efficiency and output power showed peak enhancements of 0.93 % and 1.6 %, respectively, when humidity levels were halved rather than doubled. Additionally, doubling wind velocity led to a 1.13 % decrease in indoor room temperature compared to halved velocity values, demonstrating the effectiveness of these parameters in optimizing building cooling and PV performance. Moreover, water evaporation rates reached a maximum of 6.07 L/h.m2 and a minimum of 2.4 L/h.m2 when the wind velocity and humidity values were doubled. Moreover, the system attained its highest water consumption rate of 10.19 L/h.m2 when wind velocity values were doubled. Hence, these findings offer essential insights, underscoring the considerable impact that different operational conditions have on the effectiveness of evaporative cooling systems.

Suggested Citation

  • Ali, Mustafa Ghazali & Hassan, Hamdy & Nada, Sameh A., 2025. "Parametric analysis of water-saturated porous clay structures as evaporative cooling of building integrated photovoltaic systems," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225011132
    DOI: 10.1016/j.energy.2025.135471
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225011132
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135471?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jerry L. Holechek & Hatim M. E. Geli & Mohammed N. Sawalhah & Raul Valdez, 2022. "A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050?," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harutyunyan, Artur & Badyda, Krzysztof & Wołowicz, Marcin, 2025. "Analyzing of different repowering methods on the example of 300 MW existing steam cycle power plant using gatecycle™ software," Energy, Elsevier, vol. 314(C).
    2. Ramesh Chitharaj & Hariprasad Perumal & Mohammed Almeshaal & P. Manoj Kumar, 2025. "Optimizing Performance of a Solar Flat Plate Collector for Sustainable Operation Using Box–Behnken Design (BBD)," Sustainability, MDPI, vol. 17(2), pages 1-23, January.
    3. Evgeny Chupakhin & Olga Babich & Stanislav Sukhikh & Svetlana Ivanova & Ekaterina Budenkova & Olga Kalashnikova & Alexander Prosekov & Olga Kriger & Vyacheslav Dolganyuk, 2022. "Bioengineering and Molecular Biology of Miscanthus," Energies, MDPI, vol. 15(14), pages 1-14, July.
    4. Zhang, Xiao & Xue, Rui & Zhou, Runfa & Xia, Fan & Yu, Yadong & Zhang, Xiaosong, 2025. "Research on the optimal absorption refrigeration configurations of screened low-GWP organic working fluids via pinch technology," Energy, Elsevier, vol. 320(C).
    5. Simona Domazetovska & Vladimir Strezov & Risto V. Filkoski & Tao Kan, 2023. "Exploring the Potential of Biomass Pyrolysis for Renewable and Sustainable Energy Production: A Comparative Study of Corn Cob, Vine Rod, and Sunflower," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    6. Obu Samson Showers & Sunetra Chowdhury, 2024. "Enhancing Energy Supply Reliability for University Lecture Halls Using Photovoltaic-Battery Microgrids: A South African Case Study," Energies, MDPI, vol. 17(13), pages 1-26, June.
    7. Yang Ni & Bin Peng & Jiayao Wang & Farshad Golnary & Wei Li, 2023. "A Short Review on the Time-Domain Numerical Simulations for Structural Responses in Horizontal-Axis Offshore Wind Turbines," Sustainability, MDPI, vol. 15(24), pages 1-19, December.
    8. Juan Córdoba & Guillermo Valencia & Branda Molina, 2025. "Energy, Exergy, and Exergo-Sustainability Analysis of a Brayton S-CO 2 /Kalina Operating in Araçuaí, Brazil, Using Solar Energy as a Thermal Source," Resources, MDPI, vol. 14(2), pages 1-19, February.
    9. Lee, Taewoo & Lee, Sangyoon & Tsang, Yiu Fai & Kwon, Eilhann E., 2025. "Carbon-negative power generation using syngas produced from CO2-cofeeding pyrolysis of lignocellulosic biomass," Energy, Elsevier, vol. 325(C).
    10. Evgeniya I. Lysakova & Andrey V. Minakov & Angelica D. Skorobogatova, 2023. "Effect of Nanoparticle and Carbon Nanotube Additives on Thermal Stability of Hydrocarbon-Based Drilling Fluids," Energies, MDPI, vol. 16(19), pages 1-20, September.
    11. Zdravko Pandur & Marin Bačić & Marijan Šušnjar & Matija Landekić & Mario Šporčić & Iva Ištok, 2024. "Energy Gain and Carbon Footprint in the Production of Bioelectricity and Wood Pellets in Croatia," Sustainability, MDPI, vol. 16(9), pages 1-14, May.
    12. Lu Wang & Zhijun Jin & Xiaowei Huang & Runchao Liu & Yutong Su & Qian Zhang, 2024. "Hydrogen Adsorption in Porous Geological Materials: A Review," Sustainability, MDPI, vol. 16(5), pages 1-21, February.
    13. Rafael Ninno Muniz & Carlos Tavares da Costa Júnior & William Gouvêa Buratto & Ademir Nied & Gabriel Villarrubia González, 2023. "The Sustainability Concept: A Review Focusing on Energy," Sustainability, MDPI, vol. 15(19), pages 1-22, September.
    14. Saidi, Majid & Faraji, Mehdi, 2024. "Thermochemical conversion of neem seed biomass to sustainable hydrogen and biofuels: Experimental and theoretical evaluation," Renewable Energy, Elsevier, vol. 221(C).
    15. Lindvall, Daniel & Sörqvist, Patrik & Lindeberg, Sofie & Barthel, Stephan, 2025. "The polarization of energy preferences – A study on social acceptance of wind and nuclear power in Sweden," Energy Policy, Elsevier, vol. 198(C).
    16. César Ramírez-Márquez & Thelma Posadas-Paredes & Alma Yunuen Raya-Tapia & José María Ponce-Ortega, 2024. "Natural Resource Optimization and Sustainability in Society 5.0: A Comprehensive Review," Resources, MDPI, vol. 13(2), pages 1-20, January.
    17. Youchan Kim & Kisung Lim & Hassan Salihi & Seongku Heo & Hyunchul Ju, 2023. "The Effects of Stack Configurations on the Thermal Management Capabilities of Solid Oxide Electrolysis Cells," Energies, MDPI, vol. 17(1), pages 1-20, December.
    18. Simon Huston, 2025. "Sustainability Accounting and Reporting: An Ablative Reflexive Thematic Analysis of Climate Crisis via Conservative or Radical Reform Paradigms," Sustainability, MDPI, vol. 17(11), pages 1-18, May.
    19. Mohamed Adel Allam & Mohammad Ali Abdelkareem & Hussain Alawadhi & Abdul Ghani Olabi & Abdulmonem Fetyan, 2024. "Upcycling Waste Cotton Cloth into a Carbon Textile: A Durable and Scalable Layer for Vanadium Redox Flow Battery Applications," Sustainability, MDPI, vol. 16(24), pages 1-15, December.
    20. Benchora, Inessa & Galanti, Sébastien, 2024. "Verified carbon emissions and stock returns in the EU Emissions Trading System," Energy Policy, Elsevier, vol. 193(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225011132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.