IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p125-d1307298.html
   My bibliography  Save this article

The Effects of Stack Configurations on the Thermal Management Capabilities of Solid Oxide Electrolysis Cells

Author

Listed:
  • Youchan Kim

    (Department of Mechanical Engineering, Inha University, 100 Inha-ro Michuhol-gu, Incheon 22212, Republic of Korea)

  • Kisung Lim

    (Department of Mechanical Engineering, Inha University, 100 Inha-ro Michuhol-gu, Incheon 22212, Republic of Korea)

  • Hassan Salihi

    (Department of Mechanical Engineering, Inha University, 100 Inha-ro Michuhol-gu, Incheon 22212, Republic of Korea)

  • Seongku Heo

    (Department of Mechanical Engineering, Inha University, 100 Inha-ro Michuhol-gu, Incheon 22212, Republic of Korea)

  • Hyunchul Ju

    (Department of Mechanical Engineering, Inha University, 100 Inha-ro Michuhol-gu, Incheon 22212, Republic of Korea)

Abstract

In this study, we analyze the impacts of various stack configurations of a solid oxide electrolysis cell (SOEC) that includes U-type and Z-type stack structures as well as co-flow and counter-flow configurations. The primary focus of this study is to analyze the impact of these SOEC stack configurations on the temperature distribution within the stack and the temperature variations of key components. Furthermore, by predicting the thermal stress and thermal deformation of individual SOEC components, the study can provide design guidelines for enhancing the durability of the SOEC stack. Among various SOEC stack configurations, the counter-flow design outperformed others in temperature uniformity and component temperature variation. The Z-type stack structure slightly surpassed the U-type in flow uniformity, while both had a minimal influence on thermal management. Besides conventional flow-field configurations, such as the parallel flow field, we introduce a metal-foam-based flow-field design and analyze the effects of using metal foam to ensure flow uniformity within the stack and achieve temperature uniformity. The metal foam design has a lower average temperature (2–5 °C) and ∆T (4–7 °C) compared to the parallel flow field in each cell, but this improvement is accompanied by a substantial pressure-drop: 2359.3 Pa for vapor flow (11.7 times higher) and 4409.0 Pa for air flow (4.6 times higher). Additionally, structural analysis was performed using CFD temperature data. The co-flow configuration induced higher thermal stress at the front of the stack, whereas the counter-flow configuration mitigated thermal stress in the front cells. The metal foam structure consistently demonstrated a reduction in thermal stress across all cells by about 1 MPa, highlighting its potential to alleviate thermal stress in SOEC stacks. This study presents a novel CFD analysis approach for a 10-cell SOEC stack, enabling the development of an optimized stack design with improved heat and flow distribution. The integrated CFD–FEM analysis provides reliable thermal stress data that elucidates the correlation between temperature and stress distributions within the stack.

Suggested Citation

  • Youchan Kim & Kisung Lim & Hassan Salihi & Seongku Heo & Hyunchul Ju, 2023. "The Effects of Stack Configurations on the Thermal Management Capabilities of Solid Oxide Electrolysis Cells," Energies, MDPI, vol. 17(1), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:125-:d:1307298
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/125/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/125/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jerry L. Holechek & Hatim M. E. Geli & Mohammed N. Sawalhah & Raul Valdez, 2022. "A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050?," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    2. Navasa, Maria & Yuan, Jinliang & Sundén, Bengt, 2015. "Computational fluid dynamics approach for performance evaluation of a solid oxide electrolysis cell for hydrogen production," Applied Energy, Elsevier, vol. 137(C), pages 867-876.
    3. Min, Gyubin & Choi, Saeyoung & Hong, Jongsup, 2022. "A review of solid oxide steam-electrolysis cell systems: Thermodynamics and thermal integration," Applied Energy, Elsevier, vol. 328(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evgeny Chupakhin & Olga Babich & Stanislav Sukhikh & Svetlana Ivanova & Ekaterina Budenkova & Olga Kalashnikova & Alexander Prosekov & Olga Kriger & Vyacheslav Dolganyuk, 2022. "Bioengineering and Molecular Biology of Miscanthus," Energies, MDPI, vol. 15(14), pages 1-14, July.
    2. Simona Domazetovska & Vladimir Strezov & Risto V. Filkoski & Tao Kan, 2023. "Exploring the Potential of Biomass Pyrolysis for Renewable and Sustainable Energy Production: A Comparative Study of Corn Cob, Vine Rod, and Sunflower," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    3. Zhen Zhang & Chengzhi Guan & Leidong Xie & Jian-Qiang Wang, 2022. "Design and Analysis of a Novel Opposite Trapezoidal Flow Channel for Solid Oxide Electrolysis Cell Stack," Energies, MDPI, vol. 16(1), pages 1-11, December.
    4. Xing, Xuetao & Lin, Jin & Song, Yonghua & Hu, Qiang & Zhou, You & Mu, Shujun, 2018. "Optimization of hydrogen yield of a high-temperature electrolysis system with coordinated temperature and feed factors at various loading conditions: A model-based study," Applied Energy, Elsevier, vol. 232(C), pages 368-385.
    5. Yang Ni & Bin Peng & Jiayao Wang & Farshad Golnary & Wei Li, 2023. "A Short Review on the Time-Domain Numerical Simulations for Structural Responses in Horizontal-Axis Offshore Wind Turbines," Sustainability, MDPI, vol. 15(24), pages 1-19, December.
    6. Evgeniya I. Lysakova & Andrey V. Minakov & Angelica D. Skorobogatova, 2023. "Effect of Nanoparticle and Carbon Nanotube Additives on Thermal Stability of Hydrocarbon-Based Drilling Fluids," Energies, MDPI, vol. 16(19), pages 1-20, September.
    7. Lu Wang & Zhijun Jin & Xiaowei Huang & Runchao Liu & Yutong Su & Qian Zhang, 2024. "Hydrogen Adsorption in Porous Geological Materials: A Review," Sustainability, MDPI, vol. 16(5), pages 1-21, February.
    8. Rafael Ninno Muniz & Carlos Tavares da Costa Júnior & William Gouvêa Buratto & Ademir Nied & Gabriel Villarrubia González, 2023. "The Sustainability Concept: A Review Focusing on Energy," Sustainability, MDPI, vol. 15(19), pages 1-22, September.
    9. César Ramírez-Márquez & Thelma Posadas-Paredes & Alma Yunuen Raya-Tapia & José María Ponce-Ortega, 2024. "Natural Resource Optimization and Sustainability in Society 5.0: A Comprehensive Review," Resources, MDPI, vol. 13(2), pages 1-20, January.
    10. Mohammed S. Almuhayawi & Elhagag A. Hassan & Saad Almasaudi & Nidal Zabermawi & Esam I. Azhar & Azhar Najjar & Khalil Alkuwaity & Turki S. Abujamel & Turki Alamri & Steve Harakeh, 2023. "Biodiesel Production through Rhodotorula toruloides Lipids and Utilization of De-Oiled Biomass for Congo Red Removal," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    11. Tiago Bastos & Leonor C. Teixeira & João C. O. Matias & Leonel J. R. Nunes, 2023. "Agroforestry Biomass Recovery Supply Chain Management: A More Efficient Information Flow Model Based on a Web Platform," Logistics, MDPI, vol. 7(3), pages 1-15, August.
    12. Yan Shao & Yongwei Li & Zaiguo Fu & Jingfa Li & Qunzhi Zhu, 2023. "Numerical Investigation on the Performance of IT-SOEC with Double-Layer Composite Electrode," Energies, MDPI, vol. 16(6), pages 1-20, March.
    13. Chin-Hsiang Cheng & Surender Dhanasekaran, 2023. "Cogging Force Reduction and Profile Smoothening Methods for a Slot-Spaced Permanent Magnet Linear Alternator," Energies, MDPI, vol. 16(15), pages 1-24, August.
    14. Edward Halawa, 2024. "Sustainable Energy: Concept and Definition in the Context of the Energy Transition—A Critical Review," Sustainability, MDPI, vol. 16(4), pages 1-15, February.
    15. Linus Yinn Leng Ang & Fangsen Cui & Kian-Meng Lim & Heow Pueh Lee, 2023. "A Systematic Review of Emerging Ventilated Acoustic Metamaterials for Noise Control," Sustainability, MDPI, vol. 15(5), pages 1-20, February.
    16. Srinath Belakavadi Sudarshan & Gopal Arunkumar, 2023. "Isolated DC-DC Power Converters for Simultaneous Charging of Electric Vehicle Batteries: Research Review, Design, High-Frequency Transformer Testing, Power Quality Concerns, and Future," Sustainability, MDPI, vol. 15(3), pages 1-71, February.
    17. Xia, Zhiping & Zhao, Dongqi & Li, Yuanzheng & Deng, Zhonghua & Kupecki, Jakub & Fu, Xiaowei & Li, Xi, 2023. "Control-oriented dynamic process optimization of solid oxide electrolysis cell system with the gas characteristic regarding oxygen electrode delamination," Applied Energy, Elsevier, vol. 332(C).
    18. Ioana-Cristina Badea & Beatrice-Adriana Șerban & Ioana Anasiei & Dumitru Mitrică & Mihai Tudor Olaru & Andrey Rabin & Mariana Ciurdaș, 2023. "The Energy Storage Technology Revolution to Achieve Climate Neutrality," Energies, MDPI, vol. 17(1), pages 1, December.
    19. Jesús Rey & Francisca Segura & José Manuel Andújar, 2023. "Green Hydrogen: Resources Consumption, Technological Maturity, and Regulatory Framework," Energies, MDPI, vol. 16(17), pages 1-29, August.
    20. Nikolay Rogalev & Andrey Rogalev & Vladimir Kindra & Olga Zlyvko & Sergey Osipov, 2023. "An Overview of Small Nuclear Power Plants for Clean Energy Production: Comparative Analysis of Distributed Generation Technologies and Future Perspectives," Energies, MDPI, vol. 16(13), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:125-:d:1307298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.