IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225011090.html
   My bibliography  Save this article

A comprehensive approach to multi-formation train line planning: Optimization and adjustment under “Daily Train Plan”

Author

Listed:
  • Li, Chen
  • Xia, Yang
  • Guo, Sinan
  • Wei, Yuguang

Abstract

Passenger flow on different lines varies across time and space due to locational factors and differences in economic development. To effectively manage these fluctuations, this study focuses on optimizing and adjusting multiple formation train line planning (MFTLP) under the “Daily Train Plan (DTP)" approach. A mixed-integer programming (MIP) model for MFTLP optimization and adjustment was established with dual objectives: (1) to minimize the comprehensive generalized cost of train operations, including energy consumption and carbon emissions, and (2) to minimize ticket revenue loss. Case study results, obtained through the CPLEX solver, demonstrate that the proposed MFTLP optimization and adjustment method under the “DTP” approach delivers significant economic benefits and enhances passenger service quality. The method also achieves significantly reduces in carbon emissions, improves transport efficiency, and flexibly adapts to fluctuations in passenger flow. Furthermore, moderate adjustments to the train stop plan enhance MFTLP's ability to accommodate passenger flow fluctuations.

Suggested Citation

  • Li, Chen & Xia, Yang & Guo, Sinan & Wei, Yuguang, 2025. "A comprehensive approach to multi-formation train line planning: Optimization and adjustment under “Daily Train Plan”," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225011090
    DOI: 10.1016/j.energy.2025.135467
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225011090
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135467?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Pu, Song & Zhan, Shuguang, 2021. "Two-stage robust railway line-planning approach with passenger demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    2. Yan, Fei & Goverde, Rob M.P., 2019. "Combined line planning and train timetabling for strongly heterogeneous railway lines with direct connections," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 20-46.
    3. M. M. Vazifeh & P. Santi & G. Resta & S. H. Strogatz & C. Ratti, 2018. "Addressing the minimum fleet problem in on-demand urban mobility," Nature, Nature, vol. 557(7706), pages 534-538, May.
    4. Lusby, Richard M. & Haahr, Jørgen Thorlund & Larsen, Jesper & Pisinger, David, 2017. "A Branch-and-Price algorithm for railway rolling stock rescheduling," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 228-250.
    5. Arianna Alfieri & Rutger Groot & Leo Kroon & Alexander Schrijver, 2006. "Efficient Circulation of Railway Rolling Stock," Transportation Science, INFORMS, vol. 40(3), pages 378-391, August.
    6. Meng, Lingyun & Zhou, Xuesong, 2019. "An integrated train service plan optimization model with variable demand: A team-based scheduling approach with dual cost information in a layered network," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 1-28.
    7. Lingaya, Norbert & Cordeau, Jean-Françcois & Desaulniers, Guy & Desrosiers, Jacques & Soumis, Françcois, 2002. "Operational car assignment at VIA Rail Canada," Transportation Research Part B: Methodological, Elsevier, vol. 36(9), pages 755-778, November.
    8. Canca, David & Barrena, Eva & De-Los-Santos, Alicia & Andrade-Pineda, José Luis, 2016. "Setting lines frequency and capacity in dense railway rapid transit networks with simultaneous passenger assignment," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 251-267.
    9. Lin, Zhiyuan & Kwan, Raymond S.K., 2016. "A branch-and-price approach for solving the train unit scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 97-120.
    10. Fu, Huiling & Nie, Lei & Meng, Lingyun & Sperry, Benjamin R. & He, Zhenhuan, 2015. "A hierarchical line planning approach for a large-scale high speed rail network: The China case," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 61-83.
    11. Yuan, Jiawei & Gao, Yuan & Ke, Jiannan & Yang, Lin, 2025. "Integrated train timetable with supply–demand interactions at the Chinese high-speed railway," Omega, Elsevier, vol. 131(C).
    12. Byers, Edward A. & Gasparatos, Alexandros & Serrenho, André C., 2015. "A framework for the exergy analysis of future transport pathways: Application for the United Kingdom transport system 2010–2050," Energy, Elsevier, vol. 88(C), pages 849-862.
    13. Fioole, Pieter-Jan & Kroon, Leo & Maroti, Gabor & Schrijver, Alexander, 2006. "A rolling stock circulation model for combining and splitting of passenger trains," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1281-1297, October.
    14. Li, Jiajia & Wang, Pengxin & Ma, Shan, 2024. "The impact of different transportation infrastructures on urban carbon emissions: Evidence from China," Energy, Elsevier, vol. 295(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Canca, David & Barrena, Eva, 2018. "The integrated rolling stock circulation and depot location problem in railway rapid transit systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 115-138.
    2. Lin, Boliang & Zhao, Yinan, 2021. "Synchronized optimization of EMU train assignment and second-level preventive maintenance scheduling," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Yang, Lin & Gao, Yuan & D’Ariano, Andrea & Xu, Suxiu, 2024. "Integrated optimization of train timetable and train unit circulation for a Y-type urban rail transit system with flexible train composition mode," Omega, Elsevier, vol. 122(C).
    4. Zhu, Jia Hui & Dollevoet, Twan & Huisman, Dennis, 2025. "An exact and heuristic framework for rolling stock rescheduling with railway infrastructure availability constraints," Transportation Research Part B: Methodological, Elsevier, vol. 195(C).
    5. Gao, Yuan & Xia, Jun & D’Ariano, Andrea & Yang, Lixing, 2022. "Weekly rolling stock planning in Chinese high-speed rail networks," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 295-322.
    6. Lusby, Richard M. & Haahr, Jørgen Thorlund & Larsen, Jesper & Pisinger, David, 2017. "A Branch-and-Price algorithm for railway rolling stock rescheduling," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 228-250.
    7. Gao, Yuan & Schmidt, Marie & Yang, Lixing & Gao, Ziyou, 2020. "A branch-and-price approach for trip sequence planning of high-speed train units," Omega, Elsevier, vol. 92(C).
    8. Hoogervorst, R. & Dollevoet, T.A.B. & Maróti, G. & Huisman, D., 2018. "Reducing Passenger Delays by Rolling Stock Rescheduling," Econometric Institute Research Papers EI2018-29, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    9. Lin, Zhiyuan & Kwan, Raymond S.K., 2016. "A branch-and-price approach for solving the train unit scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 97-120.
    10. Xueqiao Yu & Maoxiang Lang & Wenhui Zhang & Shiqi Li & Mingyue Zhang & Xiao Yu, 2019. "An Empirical Study on the Comprehensive Optimization Method of a Train Diagram of the China High Speed Railway Express," Sustainability, MDPI, vol. 11(7), pages 1-30, April.
    11. Zhong, Qingwei & Lusby, Richard M. & Larsen, Jesper & Zhang, Yongxiang & Peng, Qiyuan, 2019. "Rolling stock scheduling with maintenance requirements at the Chinese High-Speed Railway," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 24-44.
    12. Nielsen, Lars Kjær & Kroon, Leo & Maróti, Gábor, 2012. "A rolling horizon approach for disruption management of railway rolling stock," European Journal of Operational Research, Elsevier, vol. 220(2), pages 496-509.
    13. Yao, Zhiyuan & Nie, Lei & Fu, Huiling, 2024. "Railway line planning with passenger routing: Direct-service network representations and a two-phase solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    14. Wang, Yihui & Zhao, Kangqi & D’Ariano, Andrea & Niu, Ru & Li, Shukai & Luan, Xiaojie, 2021. "Real-time integrated train rescheduling and rolling stock circulation planning for a metro line under disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 87-117.
    15. Zhang, Yongxiang & Peng, Qiyuan & Lu, Gongyuan & Zhong, Qingwei & Yan, Xu & Zhou, Xuesong, 2022. "Integrated line planning and train timetabling through price-based cross-resolution feedback mechanism," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 240-277.
    16. Haahr, Jørgen T. & Wagenaar, Joris C. & Veelenturf, Lucas P. & Kroon, Leo G., 2016. "A comparison of two exact methods for passenger railway rolling stock (re)scheduling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 15-32.
    17. Zhao, Yaqiong & Li, Dewei & Yin, Yonghao & Zhao, Xiaoli, 2023. "Integrated optimization of demand-driven timetable, train formation plan and rolling stock circulation with variable running times and dwell times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    18. Niu, Huimin & Zhou, Xuesong & Tian, Xiaopeng, 2018. "Coordinating assignment and routing decisions in transit vehicle schedules: A variable-splitting Lagrangian decomposition approach for solution symmetry breaking," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 70-101.
    19. Niu, Jiaxin & Qiao, Ke & Zhao, Peng, 2025. "Reliability improvement of rolling stock planning with maintenance requirements for high-speed railway," Reliability Engineering and System Safety, Elsevier, vol. 259(C).
    20. Haahr, J.T. & Wagenaar, J.C. & Veelenturf, L.P. & Kroon, L.G., 2015. "A Comparison of Two Exact Methods for Passenger Railway Rolling Stock (Re)Scheduling," ERIM Report Series Research in Management ERS-2015-007-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225011090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.