IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225008618.html
   My bibliography  Save this article

Impacts of shadow conditions on solar PV array performance: A full-scale experimental and empirical study

Author

Listed:
  • Song, Zihao
  • Huang, Lin
  • Dong, Qichang
  • Zhang, Guomin
  • Chew, Michael Yit Lin
  • Setunge, Sujeeva
  • Shi, Long

Abstract

Shadow is an important hurdle to the power generation efficiency of solar photovoltaic (PV) modules. So far, most previous studies on this aspect have focused on simulation, lacking full-scale experimental study, not to mention the relevant quantitative experimental analysis. Therefore, this study conducted a full-scale outdoor experimental and empirical study on the PV modules under different shadow conditions. Experimental results revealed that the power generation capacity of a single-string PV module decreases by approximately 90 % when a specific solar cell is entirely obstructed. When a cell is shadowed, the short-circuit current drops by 20–25 %. The open-circuit voltage (Voc) drops by 25–30 % when 2/3 of the PV modules are shadowed. The short-circuit current (Isc) has a linear relationship with a smaller shadow less than a solar cell, and the Voc has a linear relationship with a shadow larger than a solar cell. However, the power generation efficiency exhibits a nonlinear relationship with the shadow ratio of the cells when they are subjected to shading. Based on the full-scale experimental tests, this study developed an empirical model, for the first time, to address the relationship between shadow ratio and power generation efficiency, where the power generation efficiency is negatively related to the 3/2 power of the shadow area. The obtained research outcome, together with the empirical model, can pave the way for future large-scale (e.g., global scale) study on addressing the impact of shadow conditions (e.g., bird droppings, dark clouds, gravel, and dust) on the power generation of solar PV systems.

Suggested Citation

  • Song, Zihao & Huang, Lin & Dong, Qichang & Zhang, Guomin & Chew, Michael Yit Lin & Setunge, Sujeeva & Shi, Long, 2025. "Impacts of shadow conditions on solar PV array performance: A full-scale experimental and empirical study," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008618
    DOI: 10.1016/j.energy.2025.135219
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225008618
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135219?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Osmani, Khaled & Haddad, Ahmad & Lemenand, Thierry & Castanier, Bruno & Ramadan, Mohamad, 2021. "An investigation on maximum power extraction algorithms from PV systems with corresponding DC-DC converters," Energy, Elsevier, vol. 224(C).
    2. Liu, Ruimiao & Liu, Zhongbing & Xiong, Wei & Zhang, Ling & Zhao, Chengliang & Yin, Yingde, 2024. "Performance simulation and optimization of building façade photovoltaic systems under different urban building layouts," Energy, Elsevier, vol. 288(C).
    3. Williams, Henry J. & Hashad, Khaled & Wang, Haomiao & Max Zhang, K., 2023. "The potential for agrivoltaics to enhance solar farm cooling," Applied Energy, Elsevier, vol. 332(C).
    4. Jun Yin & Annalisa Molini & Amilcare Porporato, 2020. "Impacts of solar intermittency on future photovoltaic reliability," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    5. Rizzo, Santi Agatino & Scelba, Giacomo, 2015. "ANN based MPPT method for rapidly variable shading conditions," Applied Energy, Elsevier, vol. 145(C), pages 124-132.
    6. Pan Xia & Lu Zhang & Min Min & Jun Li & Yun Wang & Yu Yu & Shengjie Jia, 2024. "Accurate nowcasting of cloud cover at solar photovoltaic plants using geostationary satellite images," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Bressan, M. & Gutierrez, A. & Garcia Gutierrez, L. & Alonso, C., 2018. "Development of a real-time hot-spot prevention using an emulator of partially shaded PV systems," Renewable Energy, Elsevier, vol. 127(C), pages 334-343.
    8. Ragb, Ola & Bakr, Hanan, 2023. "A new technique for estimation of photovoltaic system and tracking power peaks of PV array under partial shading," Energy, Elsevier, vol. 268(C).
    9. Satpathy, Priya Ranjan & Aljafari, Belqasem & Thanikanti, Sudhakar Babu & Sharma, Renu, 2023. "An efficient power extraction technique for improved performance and reliability of solar PV arrays during partial shading," Energy, Elsevier, vol. 282(C).
    10. Ding, Kun & Chen, Xiang & Jiang, Meng & Yang, Hang & Chen, Xihui & Zhang, Jingwei & Gao, Ruiguang & Cui, Liu, 2024. "Feature extraction and fault diagnosis of photovoltaic array based on current–voltage conversion," Applied Energy, Elsevier, vol. 353(PB).
    11. Romênia G. Vieira & Fábio M. U. de Araújo & Mahmoud Dhimish & Maria I. S. Guerra, 2020. "A Comprehensive Review on Bypass Diode Application on Photovoltaic Modules," Energies, MDPI, vol. 13(10), pages 1-21, May.
    12. Glick, Andrew & Ali, Naseem & Bossuyt, Juliaan & Recktenwald, Gerald & Calaf, Marc & Cal, Raúl Bayoán, 2020. "Infinite photovoltaic solar arrays: Considering flux of momentum and heat transfer," Renewable Energy, Elsevier, vol. 156(C), pages 791-803.
    13. Ghoname Abdullah & Hidekazu Nishimura & Toshio Fujita, 2021. "An Experimental Investigation on Photovoltaic Array Power Output Affected by the Different Partial Shading Conditions," Energies, MDPI, vol. 14(9), pages 1-14, April.
    14. Aljafari, Belqasem & Satpathy, Priya Ranjan & Thanikanti, Sudhakar Babu & Krishna Madeti, Siva Rama, 2024. "A reliable GTR-PLC approach for power enhancement and online monitoring of solar PV arrays during partial shading," Energy, Elsevier, vol. 303(C).
    15. Taveres-Cachat, Ellika & Lobaccaro, Gabriele & Goia, Francesco & Chaudhary, Gaurav, 2019. "A methodology to improve the performance of PV integrated shading devices using multi-objective optimization," Applied Energy, Elsevier, vol. 247(C), pages 731-744.
    16. Li, Qingxiang & Zhu, Li & Sun, Yong & Lu, Lin & Yang, Yang, 2020. "Performance prediction of Building Integrated Photovoltaics under no-shading, shading and masking conditions using a multi-physics model," Energy, Elsevier, vol. 213(C).
    17. Lappalainen, Kari & Valkealahti, Seppo, 2017. "Output power variation of different PV array configurations during irradiance transitions caused by moving clouds," Applied Energy, Elsevier, vol. 190(C), pages 902-910.
    18. Chen, Xiaoyang & Du, Yang & Lim, Enggee & Wen, Huiqing & Yan, Ke & Kirtley, James, 2020. "Power ramp-rates of utility-scale PV systems under passing clouds: Module-level emulation with cloud shadow modeling," Applied Energy, Elsevier, vol. 268(C).
    19. Chen, Xiang & Ding, Kun & Yang, Hang & Chen, Xihui & Zhang, Jingwei & Jiang, Meng & Gao, Ruiguang & Liu, Zengquan, 2023. "Research on real-time identification method of model parameters for the photovoltaic array," Applied Energy, Elsevier, vol. 342(C).
    20. Teo, J.C. & Tan, Rodney H.G. & Mok, V.H. & Ramachandaramurthy, Vigna K. & Tan, ChiaKwang, 2020. "Impact of bypass diode forward voltage on maximum power of a photovoltaic system under partial shading conditions," Energy, Elsevier, vol. 191(C).
    21. Luo, Yongqiang & Zhang, Ling & Su, Xiaosong & Liu, Zhongbing & Lian, Jinbu & Luo, Yongwei, 2019. "Improved thermal-electrical-optical model and performance assessment of a PV-blind embedded glazing façade system with complex shading effects," Applied Energy, Elsevier, vol. 255(C).
    22. Orozco-Gutierrez, M.L. & Ramirez-Scarpetta, J.M. & Spagnuolo, G. & Ramos-Paja, C.A., 2014. "A method for simulating large PV arrays that include reverse biased cells," Applied Energy, Elsevier, vol. 123(C), pages 157-167.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vahidhosseini, Seyed Mohammad & Rashidi, Saman & Ehsani, Mohammad Hossein, 2025. "Efficient energy harvesting using triboelectric nanogenerators (TENGs): Integration with technologies, wearable applications, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaolei Fu & Yizhi Tian, 2023. "The Study of a Magnetostrictive-Based Shading Detection Method and Device for the Photovoltaic System," Energies, MDPI, vol. 16(6), pages 1-23, March.
    2. Janusz Teneta & Wojciech Kreft & Mirosław Janowski, 2024. "Partial Shading of Photovoltaic Modules with Thin Linear Objects: Modelling in MATLAB Environment and Measurement Experiments," Energies, MDPI, vol. 17(14), pages 1-26, July.
    3. Li, Qingxiang & Zhu, Li & Sun, Yong & Lu, Lin & Yang, Yang, 2020. "Performance prediction of Building Integrated Photovoltaics under no-shading, shading and masking conditions using a multi-physics model," Energy, Elsevier, vol. 213(C).
    4. Song, Ye & Huang, Lin & Wang, Yong & Du, Yaohan & Song, Zihao & Dong, Qichang & Zhao, Xiaoqing & Qi, Jiacheng & Zhang, Guomin & Li, Wengui & Shi, Long, 2025. "Energy performance and fire risk of solar PV panels under partial shading: An experimental study," Renewable Energy, Elsevier, vol. 246(C).
    5. Lappalainen, Kari & Valkealahti, Seppo, 2022. "Sizing of energy storage systems for ramp rate control of photovoltaic strings," Renewable Energy, Elsevier, vol. 196(C), pages 1366-1375.
    6. Koo Lee & Sung Bae Cho & Junsin Yi & Hyo Sik Chang, 2022. "Simplified Recovery Process for Resistive Solder Bond (RSB) Hotspots Caused by Poor Soldering of Crystalline Silicon Photovoltaic Modules Using Resin," Energies, MDPI, vol. 15(13), pages 1-19, June.
    7. Li, Ruohan & Wang, Dongdong & Wang, Zhihao & Liang, Shunlin & Li, Zhanqing & Xie, Yiqun & He, Jiena, 2025. "Transformer approach to nowcasting solar energy using geostationary satellite data," Applied Energy, Elsevier, vol. 377(PA).
    8. Agüera-Pérez, Agustín & Espinosa-Gavira, Manuel Jesús & Palomares-Salas, José Carlos & González-de-la-Rosa, Juan José & Sierra-Fernández, José María & Florencias-Oliveros, Olivia, 2024. "Meteorological contexts in the analysis of cloud-induced photovoltaic transients: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    9. Paolo Corti & Pierluigi Bonomo & Francesco Frontini, 2023. "Paper Review of External Integrated Systems as Photovoltaic Shading Devices," Energies, MDPI, vol. 16(14), pages 1-21, July.
    10. Terrén-Serrano, G. & Martínez-Ramón, M., 2023. "Kernel learning for intra-hour solar forecasting with infrared sky images and cloud dynamic feature extraction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    11. Huang, Lin & Song, Zihao & Dong, Qichang & Song, Ye & Zhao, Xiaoqing & Qi, Jiacheng & Shi, Long, 2024. "Surface temperature and power generation efficiency of PV arrays with various row spacings: A full-scale outdoor experimental study," Applied Energy, Elsevier, vol. 367(C).
    12. Nicoletti, Francesco & Cucumo, Mario Antonio & Arcuri, Natale, 2023. "Building-integrated photovoltaics (BIPV): A mathematical approach to evaluate the electrical production of solar PV blinds," Energy, Elsevier, vol. 263(PD).
    13. Lappalainen, Kari & Wang, Guang C. & Kleissl, Jan, 2020. "Estimation of the largest expected photovoltaic power ramp rates," Applied Energy, Elsevier, vol. 278(C).
    14. Wu, Jing & Zhang, Ling & Liu, Zhongbing & Wu, Zhenghong, 2021. "Coupled optical-electrical-thermal analysis of a semi-transparent photovoltaic glazing façade under building shadow," Applied Energy, Elsevier, vol. 292(C).
    15. Rosario Carbone & Cosimo Borrello, 2022. "Experimenting with a Battery-Based Mitigation Technique for Coping with Predictable Partial Shading," Energies, MDPI, vol. 15(11), pages 1-18, June.
    16. Terrén-Serrano, Guillermo & Martínez-Ramón, Manel, 2021. "Comparative analysis of methods for cloud segmentation in ground-based infrared images," Renewable Energy, Elsevier, vol. 175(C), pages 1025-1040.
    17. Chen, Xiaoyang & Du, Yang & Lim, Enggee & Fang, Lurui & Yan, Ke, 2022. "Towards the applicability of solar nowcasting: A practice on predictive PV power ramp-rate control," Renewable Energy, Elsevier, vol. 195(C), pages 147-166.
    18. Skandalos, Nikolaos & Karamanis, Dimitris, 2021. "An optimization approach to photovoltaic building integration towards low energy buildings in different climate zones," Applied Energy, Elsevier, vol. 295(C).
    19. Lappalainen, Kari & Valkealahti, Seppo, 2021. "Experimental study of the maximum power point characteristics of partially shaded photovoltaic strings," Applied Energy, Elsevier, vol. 301(C).
    20. Terrén-Serrano, Guillermo & Martínez-Ramón, Manel, 2021. "Multi-layer wind velocity field visualization in infrared images of clouds for solar irradiance forecasting," Applied Energy, Elsevier, vol. 288(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.