IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v342y2023ics0306261923005214.html
   My bibliography  Save this article

Research on real-time identification method of model parameters for the photovoltaic array

Author

Listed:
  • Chen, Xiang
  • Ding, Kun
  • Yang, Hang
  • Chen, Xihui
  • Zhang, Jingwei
  • Jiang, Meng
  • Gao, Ruiguang
  • Liu, Zengquan

Abstract

Real-time identification study of model parameters has a facilitating effect on fault diagnosis and health state evaluation in photovoltaic (PV). Two effective methods for the real-time identification of PV array model parameters are proposed. Firstly, a PV array modeling method is proposed. This method is used to verify the accuracy of real-time model parameter identification. Then, an effective preprocessing method for the measured current–voltage (I–V) curves is proposed. The preprocessing method can improve the data quality of measured I–V curves, which helps improve the accuracy of the model parameter extraction. Next, the gorilla troops optimizer (GTO) is used to extract parameters of measured I–V curves. The extracted historical model parameters are the data sources for the real-time model parameter identification. Finally, the real-time parameter identification methods based on the time series prediction and the irradiance–temperature (G–T) grid searching are proposed. The root mean square error (RMSE) between the calculated I–V and measured I–V curves is one of the critical evaluation metrics. The RMSE of the time series prediction-based method ranges from 0.01A to 0.1A. The RMSE of the G–T grid searching-based method is around 0.01A. These two methods can complement each other and have good application prospects.

Suggested Citation

  • Chen, Xiang & Ding, Kun & Yang, Hang & Chen, Xihui & Zhang, Jingwei & Jiang, Meng & Gao, Ruiguang & Liu, Zengquan, 2023. "Research on real-time identification method of model parameters for the photovoltaic array," Applied Energy, Elsevier, vol. 342(C).
  • Handle: RePEc:eee:appene:v:342:y:2023:i:c:s0306261923005214
    DOI: 10.1016/j.apenergy.2023.121157
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923005214
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    2. Chen, Zhicong & Yu, Hui & Luo, Linlu & Wu, Lijun & Zheng, Qiao & Wu, Zhenhui & Cheng, Shuying & Lin, Peijie, 2021. "Rapid and accurate modeling of PV modules based on extreme learning machine and large datasets of I-V curves," Applied Energy, Elsevier, vol. 292(C).
    3. Chen, Xiang & Ding, Kun & Zhang, Jingwei & Han, Wei & Liu, Yongjie & Yang, Zenan & Weng, Shuai, 2022. "Online prediction of ultra-short-term photovoltaic power using chaotic characteristic analysis, improved PSO and KELM," Energy, Elsevier, vol. 248(C).
    4. Alessandrini, S. & Delle Monache, L. & Sperati, S. & Cervone, G., 2015. "An analog ensemble for short-term probabilistic solar power forecast," Applied Energy, Elsevier, vol. 157(C), pages 95-110.
    5. Wu, Lijun & Chen, Zhicong & Long, Chao & Cheng, Shuying & Lin, Peijie & Chen, Yixiang & Chen, Huihuang, 2018. "Parameter extraction of photovoltaic models from measured I-V characteristics curves using a hybrid trust-region reflective algorithm," Applied Energy, Elsevier, vol. 232(C), pages 36-53.
    6. Boutana, N. & Mellit, A. & Lughi, V. & Massi Pavan, A., 2017. "Assessment of implicit and explicit models for different photovoltaic modules technologies," Energy, Elsevier, vol. 122(C), pages 128-143.
    7. Li, Yuanliang & Ding, Kun & Zhang, Jingwei & Chen, Fudong & Chen, Xiang & Wu, Jiabing, 2019. "A fault diagnosis method for photovoltaic arrays based on fault parameters identification," Renewable Energy, Elsevier, vol. 143(C), pages 52-63.
    8. Oliva, Diego & Abd El Aziz, Mohamed & Ella Hassanien, Aboul, 2017. "Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm," Applied Energy, Elsevier, vol. 200(C), pages 141-154.
    9. Li, Shuijia & Gong, Wenyin & Gu, Qiong, 2021. "A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Sandrolini, L. & Artioli, M. & Reggiani, U., 2010. "Numerical method for the extraction of photovoltaic module double-diode model parameters through cluster analysis," Applied Energy, Elsevier, vol. 87(2), pages 442-451, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rabeh Abbassi & Salem Saidi & Shabana Urooj & Bilal Naji Alhasnawi & Mohamad A. Alawad & Manoharan Premkumar, 2023. "An Accurate Metaheuristic Mountain Gazelle Optimizer for Parameter Estimation of Single- and Double-Diode Photovoltaic Cell Models," Mathematics, MDPI, vol. 11(22), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chin, Vun Jack & Salam, Zainal, 2019. "A New Three-point-based Approach for the Parameter Extraction of Photovoltaic Cells," Applied Energy, Elsevier, vol. 237(C), pages 519-533.
    2. Li, Shuijia & Gong, Wenyin & Gu, Qiong, 2021. "A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Ridha, Hussein Mohammed & Hizam, Hashim & Mirjalili, Seyedali & Othman, Mohammad Lutfi & Ya'acob, Mohammad Effendy & Ahmadipour, Masoud, 2022. "Parameter extraction of single, double, and three diodes photovoltaic model based on guaranteed convergence arithmetic optimization algorithm and modified third order Newton Raphson methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Samuel R. Fahim & Hany M. Hasanien & Rania A. Turky & Shady H. E. Abdel Aleem & Martin Ćalasan, 2022. "A Comprehensive Review of Photovoltaic Modules Models and Algorithms Used in Parameter Extraction," Energies, MDPI, vol. 15(23), pages 1-56, November.
    5. Shi, Nan & Lv, Yanling & Zhang, Yuchen & Zhu, Xianhui, 2023. "Linear fitting Rule of I–V characteristics of thin-film cells based on Bezier function," Energy, Elsevier, vol. 278(PB).
    6. Mehmet Yesilbudak, 2021. "Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy," Energies, MDPI, vol. 14(18), pages 1-27, September.
    7. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    8. Qais, Mohammed H. & Hasanien, Hany M. & Alghuwainem, Saad, 2019. "Identification of electrical parameters for three-diode photovoltaic model using analytical and sunflower optimization algorithm," Applied Energy, Elsevier, vol. 250(C), pages 109-117.
    9. Kumari, P. Ashwini & Geethanjali, P., 2018. "Parameter estimation for photovoltaic system under normal and partial shading conditions: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 1-11.
    10. Guojiang Xiong & Jing Zhang & Dongyuan Shi & Xufeng Yuan, 2019. "Application of Supply-Demand-Based Optimization for Parameter Extraction of Solar Photovoltaic Models," Complexity, Hindawi, vol. 2019, pages 1-22, November.
    11. Zhang, Yunpeng & Hao, Peng & Lu, Hao & Ma, Jiao & Yang, Ming, 2022. "Modelling and estimating performance for PV module under varying operating conditions independent of reference condition," Applied Energy, Elsevier, vol. 310(C).
    12. Qais, Mohammed H. & Hasanien, Hany M. & Alghuwainem, Saad, 2020. "Parameters extraction of three-diode photovoltaic model using computation and Harris Hawks optimization," Energy, Elsevier, vol. 195(C).
    13. Chen, Xu & Yue, Hong & Yu, Kunjie, 2019. "Perturbed stochastic fractal search for solar PV parameter estimation," Energy, Elsevier, vol. 189(C).
    14. Zepeng Chen & Lin Li & Xiaojing Chu & Fengfu Yin & Huaqing Li, 2024. "Multi-Objective Disassembly Depth Optimization for End-of-Life Smartphones Considering the Overall Safety of the Disassembly Process," Sustainability, MDPI, vol. 16(3), pages 1-23, January.
    15. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    16. Askarzadeh, Alireza & Rezazadeh, Alireza, 2013. "Artificial bee swarm optimization algorithm for parameters identification of solar cell models," Applied Energy, Elsevier, vol. 102(C), pages 943-949.
    17. Reem Y. Abdelghany & Salah Kamel & Hamdy M. Sultan & Ahmed Khorasy & Salah K. Elsayed & Mahrous Ahmed, 2021. "Development of an Improved Bonobo Optimizer and Its Application for Solar Cell Parameter Estimation," Sustainability, MDPI, vol. 13(7), pages 1-22, March.
    18. Hasan, M.A. & Parida, S.K., 2016. "An overview of solar photovoltaic panel modeling based on analytical and experimental viewpoint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 75-83.
    19. Amrouche, Badia & Guessoum, Abderrezak & Belhamel, Maiouf, 2012. "A simple behavioural model for solar module electric characteristics based on the first order system step response for MPPT study and comparison," Applied Energy, Elsevier, vol. 91(1), pages 395-404.
    20. Schinke-Nendza, A. & von Loeper, F. & Osinski, P. & Schaumann, P. & Schmidt, V. & Weber, C., 2021. "Probabilistic forecasting of photovoltaic power supply — A hybrid approach using D-vine copulas to model spatial dependencies," Applied Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:342:y:2023:i:c:s0306261923005214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.