IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p4146-d831903.html
   My bibliography  Save this article

Experimenting with a Battery-Based Mitigation Technique for Coping with Predictable Partial Shading

Author

Listed:
  • Rosario Carbone

    (Department “dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile” (D.I.I.E.S), University “Mediterranea” of Reggio Calabria, 89124 Reggio Calabria, Italy)

  • Cosimo Borrello

    (Department “di Ingegneria Civile, dell’Energia, dell’Ambiente e dei Materiali” (D.I.C.E.A.M.), University “Mediterranea” of Reggio Calabria, 89124 Reggio Calabria, Italy)

Abstract

In this paper, the authors propose to use batteries to improve the performance of grid-connected photovoltaic plants when their photovoltaic fields are subject to partial shading phenomena. Particular attention is devoted to predictable and repetitive partial shadings, such as those that often appear in urban residential environments. Firstly, battery packs with proper nominal voltage and capacity are connected in parallel to partially shaded photovoltaic submodules. Then, the shaded photovoltaic submodules are properly disconnected and connected to the respective photovoltaic string by using a “battery control unit”, which is operated by taking into account characteristics of the specific partial shading phenomenon to cope with. To demonstrate the effectiveness of the proposed technique, an experimental study is performed to compare the performances of two identical prototypal grid-connected photovoltaic generators subject to identical artificial and repetitive partial shadings. Only one of the photovoltaic generators is equipped with batteries together with their respective battery control unit, while the second one is simply equipped with conventional bypass diodes. The main advantages of the proposed technique are a greatly improved whole power generation together with the elimination of hotspot phenomena.

Suggested Citation

  • Rosario Carbone & Cosimo Borrello, 2022. "Experimenting with a Battery-Based Mitigation Technique for Coping with Predictable Partial Shading," Energies, MDPI, vol. 15(11), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4146-:d:831903
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/4146/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/4146/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dolara, Alberto & Lazaroiu, George Cristian & Leva, Sonia & Manzolini, Giampaolo, 2013. "Experimental investigation of partial shading scenarios on PV (photovoltaic) modules," Energy, Elsevier, vol. 55(C), pages 466-475.
    2. Ghoname Abdullah & Hidekazu Nishimura & Toshio Fujita, 2021. "An Experimental Investigation on Photovoltaic Array Power Output Affected by the Different Partial Shading Conditions," Energies, MDPI, vol. 14(9), pages 1-14, April.
    3. Ko, Suk Whan & Ju, Young Chul & Hwang, Hye Mi & So, Jung Hun & Jung, Young-Seok & Song, Hyung-Jun & Song, Hee-eun & Kim, Soo-Hyun & Kang, Gi Hwan, 2017. "Electric and thermal characteristics of photovoltaic modules under partial shading and with a damaged bypass diode," Energy, Elsevier, vol. 128(C), pages 232-243.
    4. Teo, J.C. & Tan, Rodney H.G. & Mok, V.H. & Ramachandaramurthy, Vigna K. & Tan, ChiaKwang, 2020. "Impact of bypass diode forward voltage on maximum power of a photovoltaic system under partial shading conditions," Energy, Elsevier, vol. 191(C).
    5. Trzmiel, G. & Głuchy, D. & Kurz, D., 2020. "The impact of shading on the exploitation of photovoltaic installations," Renewable Energy, Elsevier, vol. 153(C), pages 480-498.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salah Beni Hamed & Mouna Ben Hamed & Lassaad Sbita, 2022. "Robust Voltage Control of a Buck DC-DC Converter: A Sliding Mode Approach," Energies, MDPI, vol. 15(17), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghoname Abdullah & Hidekazu Nishimura & Toshio Fujita, 2021. "An Experimental Investigation on Photovoltaic Array Power Output Affected by the Different Partial Shading Conditions," Energies, MDPI, vol. 14(9), pages 1-14, April.
    2. Shen, Yu & He, Zengxiang & Xu, Zhen & Wang, Yiye & Li, Chenxi & Zhang, Jinxia & Zhang, Kanjian & Wei, Haikun, 2022. "Modeling of photovoltaic modules under common shading conditions," Energy, Elsevier, vol. 256(C).
    3. Osmani, Khaled & Haddad, Ahmad & Lemenand, Thierry & Castanier, Bruno & Ramadan, Mohamad, 2021. "An investigation on maximum power extraction algorithms from PV systems with corresponding DC-DC converters," Energy, Elsevier, vol. 224(C).
    4. Xiaolei Fu & Yizhi Tian, 2023. "The Study of a Magnetostrictive-Based Shading Detection Method and Device for the Photovoltaic System," Energies, MDPI, vol. 16(6), pages 1-23, March.
    5. Chepp, Ellen David & Gasparin, Fabiano Perin & Krenzinger, Arno, 2022. "Improvements in methods for analysis of partially shaded PV modules," Renewable Energy, Elsevier, vol. 200(C), pages 900-910.
    6. Firoozzadeh, Mohammad & Shiravi, Amir Hossein & Lotfi, Marzieh & Aidarova, Saule & Sharipova, Altynay, 2021. "Optimum concentration of carbon black aqueous nanofluid as coolant of photovoltaic modules: A case study," Energy, Elsevier, vol. 225(C).
    7. Koo, Choongwan & Hong, Taehoon & Jeong, Kwangbok & Ban, Cheolwoo & Oh, Jeongyoon, 2017. "Development of the smart photovoltaic system blind and its impact on net-zero energy solar buildings using technical-economic-political analyses," Energy, Elsevier, vol. 124(C), pages 382-396.
    8. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    9. Qiong Wu & Xiaofeng Zhang & Qi Wang, 2024. "Integrating Renewable Energy in Transportation: Challenges, Solutions, and Future Prospects on Photovoltaic Noise Barriers," Sustainability, MDPI, vol. 16(6), pages 1-19, March.
    10. Fonseca Alves, Ricardo Henrique & Deus Júnior, Getúlio Antero de & Marra, Enes Gonçalves & Lemos, Rodrigo Pinto, 2021. "Automatic fault classification in photovoltaic modules using Convolutional Neural Networks," Renewable Energy, Elsevier, vol. 179(C), pages 502-516.
    11. Pareek, Smita & Dahiya, Ratna, 2016. "Enhanced power generation of partial shaded photovoltaic fields by forecasting the interconnection of modules," Energy, Elsevier, vol. 95(C), pages 561-572.
    12. Kim, Chungil & Jeong, Myeong Sang & Ko, Jaehwan & Ko, MyeongGeun & Kang, Min Gu & Song, Hyung-Jun, 2021. "Inhomogeneous rear reflector induced hot-spot risk and power loss in building-integrated bifacial c-Si photovoltaic modules," Renewable Energy, Elsevier, vol. 163(C), pages 825-835.
    13. Jeisson Vélez-Sánchez & Juan David Bastidas-Rodríguez & Carlos Andrés Ramos-Paja & Daniel González Montoya & Luz Adriana Trejos-Grisales, 2019. "A Non-Invasive Procedure for Estimating the Exponential Model Parameters of Bypass Diodes in Photovoltaic Modules," Energies, MDPI, vol. 12(2), pages 1-20, January.
    14. J. C. Teo & Rodney H. G. Tan & V. H. Mok & Vigna K. Ramachandaramurthy & ChiaKwang Tan, 2018. "Impact of Partial Shading on the P-V Characteristics and the Maximum Power of a Photovoltaic String," Energies, MDPI, vol. 11(7), pages 1-22, July.
    15. Woo Gyun Shin & Suk Whan Ko & Hyung Jun Song & Young Chul Ju & Hye Mi Hwang & Gi Hwan Kang, 2018. "Origin of Bypass Diode Fault in c-Si Photovoltaic Modules: Leakage Current under High Surrounding Temperature," Energies, MDPI, vol. 11(9), pages 1-11, September.
    16. Romênia G. Vieira & Fábio M. U. de Araújo & Mahmoud Dhimish & Maria I. S. Guerra, 2020. "A Comprehensive Review on Bypass Diode Application on Photovoltaic Modules," Energies, MDPI, vol. 13(10), pages 1-21, May.
    17. Luis Miguel Pérez Archila & Juan David Bastidas-Rodríguez & Rodrigo Correa & Luz Adriana Trejos Grisales & Daniel Gonzalez-Montoya, 2020. "A Solution of Implicit Model of Series-Parallel Photovoltaic Arrays by Using Deterministic and Metaheuristic Global Optimization Algorithms," Energies, MDPI, vol. 13(4), pages 1-22, February.
    18. Elmalky, Adham M. & Araji, Mohamad T., 2023. "Multi-objective problem of optimizing heat transfer and energy production in algal bioreactive façades," Energy, Elsevier, vol. 268(C).
    19. Arkadiusz Dobrzycki & Dariusz Kurz & Stanisław Mikulski & Grzegorz Wodnicki, 2020. "Analysis of the Impact of Building Integrated Photovoltaics (BIPV) on Reducing the Demand for Electricity and Heat in Buildings Located in Poland," Energies, MDPI, vol. 13(10), pages 1-19, May.
    20. Herez, Amal & El Hage, Hicham & Lemenand, Thierry & Ramadan, Mohamad & Khaled, Mahmoud, 2021. "Parabolic trough photovoltaic/thermal hybrid system: Thermal modeling and parametric analysis," Renewable Energy, Elsevier, vol. 165(P1), pages 224-236.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4146-:d:831903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.