IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225008485.html
   My bibliography  Save this article

Demand response-based multi-layer peer-to-peer energy trading strategy for renewable-powered microgrids with electric vehicles

Author

Listed:
  • Sepehrzad, Reza
  • Langeroudi, Amir Saman Godazi
  • Al-Durra, Ahmed
  • Anvari-Moghaddam, Amjad
  • Sadabadi, Mahdieh S.

Abstract

The integration of prosumers in power systems can be beneficial considering the advantages of on-site electrical power supplies in contributing to peak shaving and postponing the investment costs to build new capacity in electrical power systems. This paper presents a two-stage day-ahead peer-to-peer pricing and power exchange among local market participants, including the upstream grid, consumers, prosumers, and electric vehicles (EVs). In the first stage, initial pricing is determined by the mid-market rate pricing method, considering the declared demand of each participant and forecasting the solar production of prosumers based on the demand response program. The random behavior of electric vehicles is modeled in the second stage via scenario generation and final pricing, and then, the electrical power exchanged between participants is determined considering the stochastic mechanism of EVs’ charging and discharging. The proposed two-objective problem is formulated as a single objective by the epsilon constraint method. The proposed mixed integer nonlinear programming (MINLP) is solved in GAMS using the DICOPT solver. The operating cost of the system using the proposed method is reduced by 21.66 %, and the power loss cost is reduced by 19.99 % compared to the base scenario.

Suggested Citation

  • Sepehrzad, Reza & Langeroudi, Amir Saman Godazi & Al-Durra, Ahmed & Anvari-Moghaddam, Amjad & Sadabadi, Mahdieh S., 2025. "Demand response-based multi-layer peer-to-peer energy trading strategy for renewable-powered microgrids with electric vehicles," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008485
    DOI: 10.1016/j.energy.2025.135206
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225008485
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135206?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. May, Ross & Huang, Pei, 2023. "A multi-agent reinforcement learning approach for investigating and optimising peer-to-peer prosumer energy markets," Applied Energy, Elsevier, vol. 334(C).
    2. Gao, Hongjun & Li, Yunman & He, Shuaijia & Tang, Zhiyuan & Liu, Junyong, 2024. "Distributionally robust planning for power distribution network considering multi-energy station enabled integrated demand response," Energy, Elsevier, vol. 306(C).
    3. Bian, Yifan & Xie, Lirong & Ye, Jiahao & Ma, Lan & Cui, Chuanshi, 2024. "Peer-to-peer energy sharing model considering multi-objective optimal allocation of shared energy storage in a multi-microgrid system," Energy, Elsevier, vol. 288(C).
    4. Li, Li & Fan, Shuai & Xiao, Jucheng & Zhou, Huan & Shen, Yu & He, Guangyu, 2024. "Fair trading strategy in multi-energy systems considering design optimization and demand response based on consumer psychology," Energy, Elsevier, vol. 306(C).
    5. Wu, Qian & Song, Qiankun & He, Xing & Chen, Guo & Huang, Tingwen, 2024. "Distributed peer-to-peer energy trading framework with manufacturing assembly process and uncertain renewable energy plants in multi-industrial micro-grids," Energy, Elsevier, vol. 302(C).
    6. Yuwei Chen & Ji Xiang & Yanjun Li, 2018. "SOCP Relaxations of Optimal Power Flow Problem Considering Current Margins in Radial Networks," Energies, MDPI, vol. 11(11), pages 1-17, November.
    7. Zhang, Chenxi & Yang, Yi & Wang, Yunqi & Qiu, Jing & Zhao, Junhua, 2024. "Auction-based peer-to-peer energy trading considering echelon utilization of retired electric vehicle second-life batteries," Applied Energy, Elsevier, vol. 358(C).
    8. Sepehrzad, Reza & Khodadadi, Amin & Adinehpour, Sara & Karimi, Maede, 2024. "A multi-agent deep reinforcement learning paradigm to improve the robustness and resilience of grid connected electric vehicle charging stations against the destructive effects of cyber-attacks," Energy, Elsevier, vol. 307(C).
    9. Tushar, Wayes & Saha, Tapan Kumar & Yuen, Chau & Morstyn, Thomas & McCulloch, Malcolm D. & Poor, H. Vincent & Wood, Kristin L., 2019. "A motivational game-theoretic approach for peer-to-peer energy trading in the smart grid," Applied Energy, Elsevier, vol. 243(C), pages 10-20.
    10. Zhu, Xiwen & Li, Mingxue & Liu, Xiaoqiang & Zhang, Yufeng, 2024. "A backpropagation neural network-based hybrid energy recognition and management system," Energy, Elsevier, vol. 297(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramul, Ali Rashid & Shahraki, Atefeh Salimi & Bachache, Nasseer K. & Sadeghi, Ramtin, 2025. "Cyberspace enhancement of electric vehicle charging stations in smart grids based on detection and resilience measures against hybrid cyberattacks: A multi-agent deep reinforcement learning approach," Energy, Elsevier, vol. 325(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Sen & Hu, Weihao & Du, Jialin & Cao, Xilin & Bai, Chunguang & Liu, Wen & Wang, Daojuan & Chen, Zhe, 2025. "Hierarchical distributionally robust scheduling strategy for distributed energy systems in the energy-sharing environment," Applied Energy, Elsevier, vol. 388(C).
    2. Kisal Kawshika Gunawardana Hathamune Liyanage & Shama Naz Islam, 2024. "Comparative Analysis of Market Clearing Mechanisms for Peer-to-Peer Energy Market Based on Double Auction," Energies, MDPI, vol. 17(22), pages 1-17, November.
    3. Elimam, Mohamed & El Moursi, Mohamed Shawki & EL-Fouly, Tarek H.M. & Al-Durra, Ahmed & Al Hosani, Khalifa Hassan, 2025. "Transactive energy trading among multi-microgrids in a distribution network with fair loss sharing," Applied Energy, Elsevier, vol. 381(C).
    4. Zhihan Shi & Weisong Han & Guangming Zhang & Zhiqing Bai & Mingxiang Zhu & Xiaodong Lv, 2022. "Research on Low-Carbon Energy Sharing through the Alliance of Integrated Energy Systems with Multiple Uncertainties," Energies, MDPI, vol. 15(24), pages 1-20, December.
    5. Lyu, Cheng & Jia, Youwei & Xu, Zhao, 2021. "Fully decentralized peer-to-peer energy sharing framework for smart buildings with local battery system and aggregated electric vehicles," Applied Energy, Elsevier, vol. 299(C).
    6. Lan, Penghang & Chen, She & Li, Qihang & Li, Kelin & Wang, Feng & Zhao, Yaoxun, 2024. "Intelligent hydrogen-ammonia combined energy storage system with deep reinforcement learning," Renewable Energy, Elsevier, vol. 237(PB).
    7. Gheouany, Saad & Ouadi, Hamid & El Bakali, Saida, 2024. "Optimal active and reactive energy management for a smart microgrid system under the Moroccan grid pricing code," Energy, Elsevier, vol. 306(C).
    8. Sara Khan & Uzma Amin & Ahmed Abu-Siada, 2024. "P2P Energy Trading of EVs Using Blockchain Technology in Centralized and Decentralized Networks: A Review," Energies, MDPI, vol. 17(9), pages 1-17, April.
    9. Bhatti, Bilal Ahmad & Broadwater, Robert, 2019. "Energy trading in the distribution system using a non-model based game theoretic approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Wang, Lu & Gu, Wei & Wu, Zhi & Qiu, Haifeng & Pan, Guangsheng, 2020. "Non-cooperative game-based multilateral contract transactions in power-heating integrated systems," Applied Energy, Elsevier, vol. 268(C).
    11. Li, Bo & Li, Xu & Su, Qingyu, 2022. "A system and game strategy for the isolated island electric-gas deeply coupled energy network," Applied Energy, Elsevier, vol. 306(PA).
    12. Chen, Yang & Park, Byungkwon & Kou, Xiao & Hu, Mengqi & Dong, Jin & Li, Fangxing & Amasyali, Kadir & Olama, Mohammed, 2020. "A comparison study on trading behavior and profit distribution in local energy transaction games," Applied Energy, Elsevier, vol. 280(C).
    13. Wu, Biao & Zhang, Shaohua & Yuan, Chenxin & Wang, Xian & Wang, Fei & Zhang, Shengqi, 2024. "Cooperative energy and reserve trading strategies for multiple integrated energy systems based on asymmetric nash bargaining theory," Energy, Elsevier, vol. 313(C).
    14. Fontecha, John E. & Nikolaev, Alexander & Walteros, Jose L. & Zhu, Zhenduo, 2022. "Scientists wanted? A literature review on incentive programs that promote pro-environmental consumer behavior: Energy, waste, and water," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    15. Tarashandeh, Nader & Karimi, Ali, 2024. "Peer-to-peer energy trading under distribution network constraints with preserving independent nature of agents," Applied Energy, Elsevier, vol. 355(C).
    16. Vinyals, Meritxell, 2021. "Scalable multi-agent local energy trading — Meeting regulatory compliance and validation in the Cardiff grid," Applied Energy, Elsevier, vol. 298(C).
    17. Henni, Sarah & Staudt, Philipp & Weinhardt, Christof, 2021. "A sharing economy for residential communities with PV-coupled battery storage: Benefits, pricing and participant matching," Applied Energy, Elsevier, vol. 301(C).
    18. Chen, Yifan & Yang, Liuquan & Yang, Chao & Wang, Weida & Zha, Mingjun & Gao, Pu & Liu, Hui, 2024. "Real-time analytical solution to energy management for hybrid electric vehicles using intelligent driving cycle recognition," Energy, Elsevier, vol. 307(C).
    19. Soto, Esteban A. & Bosman, Lisa B. & Wollega, Ebisa & Leon-Salas, Walter D., 2021. "Peer-to-peer energy trading: A review of the literature," Applied Energy, Elsevier, vol. 283(C).
    20. Nemanja Mišljenović & Matej Žnidarec & Goran Knežević & Damir Šljivac & Andreas Sumper, 2023. "A Review of Energy Management Systems and Organizational Structures of Prosumers," Energies, MDPI, vol. 16(7), pages 1-32, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.