A backpropagation neural network-based hybrid energy recognition and management system
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.131264
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Lin, Ruojue & Liu, Yue & Liu, Mengru & Man, Yi, 2019. "Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—A case study of papermaking process," Energy, Elsevier, vol. 170(C), pages 1215-1227.
- Ma, Bin & Guo, Xing & Li, Penghui, 2023. "Adaptive energy management strategy based on a model predictive control with real-time tuning weight for hybrid energy storage system," Energy, Elsevier, vol. 283(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rizk M Rizk-Allah & Lobna M Abouelmagd & Ashraf Darwish & Vaclav Snasel & Aboul Ella Hassanien, 2024. "Explainable AI and optimized solar power generation forecasting model based on environmental conditions," PLOS ONE, Public Library of Science, vol. 19(10), pages 1-33, October.
- Chen, Yifan & Yang, Liuquan & Yang, Chao & Wang, Weida & Zha, Mingjun & Gao, Pu & Liu, Hui, 2024. "Real-time analytical solution to energy management for hybrid electric vehicles using intelligent driving cycle recognition," Energy, Elsevier, vol. 307(C).
- Sepehrzad, Reza & Langeroudi, Amir Saman Godazi & Al-Durra, Ahmed & Anvari-Moghaddam, Amjad & Sadabadi, Mahdieh S., 2025. "Demand response-based multi-layer peer-to-peer energy trading strategy for renewable-powered microgrids with electric vehicles," Energy, Elsevier, vol. 320(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Bin & He, Guo & Hu, Lin & Li, Heng & Wang, Miaoben & Zhang, Rui & Gao, Kai, 2025. "Energy management of electric vehicles based on improved long short term memory network and data-enabled predictive control," Applied Energy, Elsevier, vol. 384(C).
- Wang, Lei & Wang, Xinyu & Zhao, Zhongchao, 2024. "Mid-term electricity demand forecasting using improved multi-mode reconstruction and particle swarm-enhanced support vector regression," Energy, Elsevier, vol. 304(C).
- Ma, Bin & Li, Peng-Hui, 2025. "Optimal flexible power allocation energy management strategy for hybrid energy storage system with genetic algorithm based model predictive control," Energy, Elsevier, vol. 324(C).
- Akhter, Muhammad Naveed & Mekhilef, Saad & Mokhlis, Hazlie & Ali, Raza & Usama, Muhammad & Muhammad, Munir Azam & Khairuddin, Anis Salwa Mohd, 2022. "A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems," Applied Energy, Elsevier, vol. 307(C).
- Shichao Huang & Jing Zhang & Yu He & Xiaofan Fu & Luqin Fan & Gang Yao & Yongjun Wen, 2022. "Short-Term Load Forecasting Based on the CEEMDAN-Sample Entropy-BPNN-Transformer," Energies, MDPI, vol. 15(10), pages 1-14, May.
- Hu, Yusha & Man, Yi, 2022. "Two-stage energy scheduling optimization model for complex industrial process and its industrial verification," Renewable Energy, Elsevier, vol. 193(C), pages 879-894.
- Zhang, Dongxue & Wang, Shuai & Liang, Yuqiu & Du, Zhiyuan, 2023. "A novel combined model for probabilistic load forecasting based on deep learning and improved optimizer," Energy, Elsevier, vol. 264(C).
- Lu, Shengdong & Yang, Xinle & Bu, Shujuan & Li, Weikang & Yu, Ning & Wang, Xin & Dai, Wenzhi & Liu, Xunan, 2024. "Performance and parameter prediction of SCR–ORC system based on data–model fusion and twin data–driven," Energy, Elsevier, vol. 290(C).
- Malekizadeh, M. & Karami, H. & Karimi, M. & Moshari, A. & Sanjari, M.J., 2020. "Short-term load forecast using ensemble neuro-fuzzy model," Energy, Elsevier, vol. 196(C).
- Wang, Kang & Wang, Jianzhou & Zeng, Bo & Lu, Haiyan, 2022. "An integrated power load point-interval forecasting system based on information entropy and multi-objective optimization," Applied Energy, Elsevier, vol. 314(C).
- Yang, Dongchuan & Guo, Ju-e & Li, Yanzhao & Sun, Shaolong & Wang, Shouyang, 2023. "Short-term load forecasting with an improved dynamic decomposition-reconstruction-ensemble approach," Energy, Elsevier, vol. 263(PA).
- Mustafa Saglam & Xiaojing Lv & Catalina Spataru & Omer Ali Karaman, 2024. "Instantaneous Electricity Peak Load Forecasting Using Optimization and Machine Learning," Energies, MDPI, vol. 17(4), pages 1-22, February.
- Wang, Jianzhou & Xing, Qianyi & Zeng, Bo & Zhao, Weigang, 2022. "An ensemble forecasting system for short-term power load based on multi-objective optimizer and fuzzy granulation," Applied Energy, Elsevier, vol. 327(C).
- Guo‐Feng Fan & Yan‐Hui Guo & Jia‐Mei Zheng & Wei‐Chiang Hong, 2020. "A generalized regression model based on hybrid empirical mode decomposition and support vector regression with back‐propagation neural network for mid‐short‐term load forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 737-756, August.
- Yu, Wenjin & Zhou, Peijian & Miao, Zhouqian & Zhao, Haoru & Mou, Jiegang & Zhou, Wenqiang, 2024. "Energy performance prediction of pump as turbine (PAT) based on PIWOA-BP neural network," Renewable Energy, Elsevier, vol. 222(C).
- Yang, Jiuqiang & Lin, Niantian & Zhang, Kai & Fu, Chao & Zhang, Chong, 2024. "Transfer learning-based hybrid deep learning method for gas-bearing distribution prediction with insufficient training samples and uncertainty analysis," Energy, Elsevier, vol. 299(C).
- Rujia Nie & Jinxing Che & Fang Yuan & Weihua Zhao, 2024. "Forecasting peak electric load: Robust support vector regression with smooth nonconvex ϵ‐insensitive loss," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1902-1917, September.
- Zhang, Yagang & Pan, Zhiya & Wang, Hui & Wang, Jingchao & Zhao, Zheng & Wang, Fei, 2023. "Achieving wind power and photovoltaic power prediction: An intelligent prediction system based on a deep learning approach," Energy, Elsevier, vol. 283(C).
- Qi Jiang & Yuxin Cheng & Haozhe Le & Chunquan Li & Peter X. Liu, 2022. "A Stacking Learning Model Based on Multiple Similar Days for Short-Term Load Forecasting," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
- Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010375. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.