IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v319y2025ics036054422500502x.html
   My bibliography  Save this article

Research on regulation strategy of integrated energy system based on game theory and divide-and-conquer algorithm

Author

Listed:
  • Wu, Yanjuan
  • Jin, Pengfei
  • Li, Qing

Abstract

Integrated energy system is an energy supply method that enables the complementary and efficient utilization of multiple energy sources. However, integrated energy system involves multiple stakeholders, including the integrated energy operator, energy storage system, and energy user. Their behaviors can lead to reduced system benefits, increased carbon emissions, and even violations. To address the above issues, an integrated energy system hybrid game model with the participation of the regulatory agency is constructed, and a divide-and-conquer algorithm is proposed to solve it. Firstly, this study establishes a Stackelberg game model to analyze the interactions among participants within the system and formulates a non-cooperative game model to investigate the relationship between integrated energy system and regulatory agency. Then, game theory is combined with the divide-and-conquer algorithm to solve the hybrid game model, evaluating the optimal strategies for the integrated energy operator as the leader, the energy storage system and energy user as followers under regulatory agency's interventions. Finally, a case study is conducted to analyze the regulatory agency's goal of maximizing overall system benefits and environmental benefits. By analyzing the impacts of various regulatory strategies on the system, this study provides actionable decision support and policy recommendations for the regulatory agency.

Suggested Citation

  • Wu, Yanjuan & Jin, Pengfei & Li, Qing, 2025. "Research on regulation strategy of integrated energy system based on game theory and divide-and-conquer algorithm," Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:energy:v:319:y:2025:i:c:s036054422500502x
    DOI: 10.1016/j.energy.2025.134860
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422500502X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134860?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. El-Emam, Rami S. & Constantin, Alina & Bhattacharyya, Rupsha & Ishaq, Haris & Ricotti, Marco E., 2024. "Nuclear and renewables in multipurpose integrated energy systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Wang, Yong & Liu, Shimiao & Abedin, Mohammad Zoynul & Lucey, Brian, 2024. "Volatility spillover and hedging strategies among Chinese carbon, energy, and electricity markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    3. Wang, L.L. & Xian, R.C. & Jiao, P.H. & Chen, J.J. & Chen, Y. & Liu, H.G., 2024. "Multi-timescale optimization of integrated energy system with diversified utilization of hydrogen energy under the coupling of green certificate and carbon trading," Renewable Energy, Elsevier, vol. 228(C).
    4. Wang, Rutian & Wen, Xiangyun & Wang, Xiuyun & Fu, Yanbo & Zhang, Yu, 2022. "Low carbon optimal operation of integrated energy system based on carbon capture technology, LCA carbon emissions and ladder-type carbon trading," Applied Energy, Elsevier, vol. 311(C).
    5. Li, Jialin & Hu, Yu & Chi, Yuanying & Liu, Dunnan & Yang, Shuxia & Gao, Zhiyuan & Chen, Yuetong, 2024. "Analysis on the synergy between markets of electricity, carbon, and tradable green certificates in China," Energy, Elsevier, vol. 302(C).
    6. Chen, Weidong & Wang, Junnan & Yu, Guanyi & Chen, Jiajia & Hu, Yumeng, 2022. "Research on day-ahead transactions between multi-microgrid based on cooperative game model," Applied Energy, Elsevier, vol. 316(C).
    7. Yao, Wenliang & Wang, Chengfu & Yang, Ming & Wang, Kang & Dong, Xiaoming & Zhang, Zhenwei, 2023. "A tri-layer decision-making framework for IES considering the interaction of integrated demand response and multi-energy market clearing," Applied Energy, Elsevier, vol. 342(C).
    8. Zhao, Xiaoli & Sun, Chuyu & Zhong, Zewei & Liu, Suwei & Yang, Zili, 2023. "Effect of market structure on renewable energy Development—A simulation study of a regional electricity market in China," Renewable Energy, Elsevier, vol. 215(C).
    9. Mu, Chenlu & Ding, Tao & Qu, Ming & Zhou, Quan & Li, Fangxing & Shahidehpour, Mohammad, 2020. "Decentralized optimization operation for the multiple integrated energy systems with energy cascade utilization," Applied Energy, Elsevier, vol. 280(C).
    10. Lei, Zhenxing & Liu, Mingbo & Shen, Zhijun & Lu, Wentian & Lu, Zhilin, 2023. "A data-driven Stackelberg game approach applied to analysis of strategic bidding for distributed energy resource aggregator in electricity markets," Renewable Energy, Elsevier, vol. 215(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong, Xi & Zhao, Shuyuan & Chen, Heng & Wang, Xinyu & Liu, Wenyi & Sun, Ying & Zhang, Lei, 2025. "Optimal dispatch of a multi-energy complementary system containing energy storage considering the trading of carbon emission and green certificate in China," Energy, Elsevier, vol. 314(C).
    2. Liu, Dewen & Luo, Zhao & Qin, Jinghui & Wang, Hua & Wang, Gang & Li, Zhao & Zhao, Weijie & Shen, Xin, 2023. "Low-carbon dispatch of multi-district integrated energy systems considering carbon emission trading and green certificate trading," Renewable Energy, Elsevier, vol. 218(C).
    3. Li, Xinyan & Wu, Nan, 2024. "A two-stage distributed robust optimal control strategy for energy collaboration in multi-regional integrated energy systems based on cooperative game," Energy, Elsevier, vol. 305(C).
    4. Zhang, Kaoshe & Gao, Congchong & Zhang, Gang & Xie, Tuo & Li, Hua, 2024. "Electricity and heat sharing strategy of regional comprehensive energy multi-microgrid based on double-layer game," Energy, Elsevier, vol. 293(C).
    5. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    6. Jin Gao & Zhenguo Shao & Feixiong Chen & Mohammadreza Lak, 2025. "Energy Trading Strategies for Integrated Energy Systems Considering Uncertainty," Energies, MDPI, vol. 18(4), pages 1-21, February.
    7. Jiyong Li & Zeyi Hua & Lin Tian & Peiwen Chen & Hao Dong, 2024. "Optimal Capacity Allocation for Life Cycle Multiobjective Integrated Energy Systems Considering Capacity Tariffs and Eco-Indicator 99," Sustainability, MDPI, vol. 16(20), pages 1-22, October.
    8. Ma, Huan & Sun, Qinghan & Chen, Qun & Zhao, Tian & He, Kelun, 2023. "Exergy-based flexibility cost indicator and spatio-temporal coordination principle of distributed multi-energy systems," Energy, Elsevier, vol. 267(C).
    9. Li, Yang & Wang, Bin & Yang, Zhen & Li, Jiazheng & Chen, Chen, 2022. "Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game," Applied Energy, Elsevier, vol. 308(C).
    10. Wang, Xinya & Rong, Xueyun & Yin, Lei, 2024. "Discerning the impact of global geopolitical risks on China's energy futures market spillovers: Evidence from higher-order moments," Energy Economics, Elsevier, vol. 140(C).
    11. Guo, Yi & Tang, Yuming & Wang, Lingzi & Wang, Yuli & Peng, Xueyuan, 2024. "Optimal design of operating frequency for the ionic liquid compressor applied in hydrogen storage," Renewable Energy, Elsevier, vol. 237(PB).
    12. Jani, Ali & Jadid, Shahram, 2023. "Two-stage energy scheduling framework for multi-microgrid system in market environment," Applied Energy, Elsevier, vol. 336(C).
    13. Yan Lu & Bo Ning & Pengyun Geng & Yan Li & Jiajie Kong, 2025. "Research on the Current Status and Key Issues of China’s Green Electricity Trading Development," Energies, MDPI, vol. 18(7), pages 1-21, March.
    14. Zhichao Ma & Jie Zhang & Huanhuan Wang & Shaochan Gao, 2023. "Optimization of Sustainable Bi-Objective Cold-Chain Logistics Route Considering Carbon Emissions and Customers’ Immediate Demands in China," Sustainability, MDPI, vol. 15(7), pages 1-23, March.
    15. Liang, Chao & Goodell, John W. & Li, Xiafei, 2024. "Impacts of carbon market and climate policy uncertainties on financial and economic stability: Evidence from connectedness network analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 92(C).
    16. Ma, Runzhuo & Bu, Siqi, 2025. "Evaluation and mitigation of carbon emissions in energy industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    17. Ge, Haotian & Zhu, Yu & Zhong, Jiuming & Wu, Liang, 2024. "Day-ahead optimization for smart energy management of multi-microgrid using a stochastic-robust model," Energy, Elsevier, vol. 313(C).
    18. Wang, Haibing & Zhao, Anjie & Khan, Muhammad Qasim & Sun, Weiqing, 2024. "Optimal operation of energy hub considering reward-punishment ladder carbon trading and electrothermal demand coupling," Energy, Elsevier, vol. 286(C).
    19. Yang, Xiaohui & Zhang, Zhonglian & Mei, Linghao & Wang, Xiaopeng & Deng, Yeheng & Wei, Shi & Liu, Xiaoping, 2023. "Optimal configuration of improved integrated energy system based on stepped carbon penalty response and improved power to gas," Energy, Elsevier, vol. 263(PD).
    20. Thellufsen, Jakob Zinck & Lund, Henrik & Mathiesen, Brian Vad & Østergaard, Poul Alberg & Sorknæs, Peter & Nielsen, Steffen & Madsen, Poul Thøis & Andresen, Gorm Bruun, 2024. "Cost and system effects of nuclear power in carbon-neutral energy systems," Applied Energy, Elsevier, vol. 371(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:319:y:2025:i:c:s036054422500502x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.