IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v318y2025ics0360544225005535.html
   My bibliography  Save this article

Performance evaluation of liquid fuel derived from waste plastics for diesel engine applications and emissions characteristics

Author

Listed:
  • Belay, Nega Chanie
  • Fentaw, Birhanu Adisie
  • Nallamothu, Ramesh Babu
  • Kebede, Melese Shiferaw

Abstract

Conventional fossil fuels, such as diesel are commonly used to power vehicles and machinery in many industries, including transportation and agriculture. However, the demand for these fuels is increasing worldwide, especially in developing countries, raising concerns about long-term energy security and environmental impact. The use of hydrocarbon fuels is linked to air pollution and climate change, prompting research on alternative energy sources. This study explored the potential of using oil made from a mixture of four waste plastics (polypropylene, polystyrene, low-density polyethylene, and high-density polyethylene) as an alternative fuel for diesel engines and the effect of blending waste plastic oil with diesel (20 % waste plastic and 80 % diesel fuel-B20, 30 % waste plastic and 70 % diesel fuel-B30, and 50 % waste plastic and 50 % diesel fuel-B50) on fuel properties, engine performance, and engine emission characteristics. Fuel properties such as density and kinematic viscosity were evaluated and compared to baseline data obtained with pure diesel (100 % diesel fuel-B0). Engine performance like brake power, brake torque and brake specific fuel consumption and Emissions, including carbon monoxide (CO), Carbon dioxide (CO2), unburned hydrocarbon (UHC), and nitrogen dioxide (NOx), were also assessed. Both density and kinematic viscosity were observed to decrease as the proportion of waste plastic fuel in the blend increased, with values lower than those of pure diesel but higher than the minimum standard up to B50. The maximum gap between the pure diesel and its blend at the peak points for brake power and brake torque is 12 % (B30 at 3600 rpm) and 16 % (B50 at 1150 rpm), respectively, in which diesel fuel is at the top. However, in terms of bsfc, B50 has the lowest consumption, which can reduce fuel consumption by up to 7 %. In case of emission, the waste plastic blend improved NOx emissions (except for B50), carbon dioxide, and unburned hydrocarbons by 3 % (B20 at 3600 rpm), 10 % (B50 at 1300 rpm), and 19 % (B30 at 1000 rpm), respectively. However, the CO emissions were slightly higher at low speeds and were nearly comparable at higher engine speeds. The economic analysis shows that the blends of waste plastic oil can substitute diesel respect to engine performance and energy output, provided the cost of these blends is 51 % lower than that of diesel.

Suggested Citation

  • Belay, Nega Chanie & Fentaw, Birhanu Adisie & Nallamothu, Ramesh Babu & Kebede, Melese Shiferaw, 2025. "Performance evaluation of liquid fuel derived from waste plastics for diesel engine applications and emissions characteristics," Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225005535
    DOI: 10.1016/j.energy.2025.134911
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225005535
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134911?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Pham, Quangkhai & Park, Sungwook & Agarwal, Avinash Kumar & Park, Suhan, 2022. "Review of dual-fuel combustion in the compression-ignition engine: Spray, combustion, and emission," Energy, Elsevier, vol. 250(C).
    2. Thangaraja, J. & Anand, K. & Mehta, Pramod S., 2016. "Biodiesel NOx penalty and control measures - a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 1-24.
    3. Al-Rumaihi, Aisha & Shahbaz, Muhammad & Mckay, Gordon & Mackey, Hamish & Al-Ansari, Tareq, 2022. "A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Devaraj, J. & Robinson, Y. & Ganapathi, P., 2015. "Experimental investigation of performance, emission and combustion characteristics of waste plastic pyrolysis oil blended with diethyl ether used as fuel for diesel engine," Energy, Elsevier, vol. 85(C), pages 304-309.
    5. Tabernilla, Zuria & Ateka, Ainara & Bilbao, Javier & Aguayo, Andrés T. & Epelde, Eva, 2023. "Performance of HZSM-5 agglomerated in a mesoporous matrix in the fuel production from ethylene at atmospheric pressure," Energy, Elsevier, vol. 284(C).
    6. Alptekin, Ertan, 2017. "Emission, injection and combustion characteristics of biodiesel and oxygenated fuel blends in a common rail diesel engine," Energy, Elsevier, vol. 119(C), pages 44-52.
    7. Ilyas, Hafiz Muhammad Abrar & Safa, Majeed & Bailey, Alison & Rauf, Sara & Cullen, Mat, 2019. "Evaluation of energy footprint of pastoral and barn dairy farming systems in New Zealand," 22nd Congress, Tasmania, Australia, March 3-8, 2019 345886, International Farm Management Association.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Öztürk, Erkan & Can, Özer, 2022. "Effects of EGR, injection retardation and ethanol addition on combustion, performance and emissions of a DI diesel engine fueled with canola biodiesel/diesel fuel blend," Energy, Elsevier, vol. 244(PB).
    2. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    3. Das, Amar Kumar & Hansdah, Dulari & Panda, Achyut Kumar, 2021. "Thermal balancing and exergetic performance evaluation of a compression ignition engine fuelled with waste plastic pyrolytic oil and different fuel additives," Energy, Elsevier, vol. 229(C).
    4. Cornejo, A. & Barrio, I. & Campoy, M. & Lázaro, J. & Navarrete, B., 2017. "Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1400-1413.
    5. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).
    6. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
    7. Obed M. Ali & Rizalman Mamat & Gholamhassan Najafi & Talal Yusaf & Seyed Mohammad Safieddin Ardebili, 2015. "Optimization of Biodiesel-Diesel Blended Fuel Properties and Engine Performance with Ether Additive Using Statistical Analysis and Response Surface Methods," Energies, MDPI, vol. 8(12), pages 1-15, December.
    8. Erdoğan, Sinan & Balki, Mustafa Kemal & Aydın, Selman & Sayın, Cenk, 2020. "Performance, emission and combustion characteristic assessment of biodiesels derived from beef bone marrow in a diesel generator," Energy, Elsevier, vol. 207(C).
    9. He, Longguo & Gong, Wanru & Zhao, Jianhui, 2025. "Research on fuel injection quantity fluctuation characteristics and optimization improvement of dual-fuel engines," Energy, Elsevier, vol. 324(C).
    10. Khatha Wathakit & Ekarong Sukjit & Chalita Kaewbuddee & Somkiat Maithomklang & Niti Klinkaew & Pansa Liplap & Weerachai Arjharn & Jiraphon Srisertpol, 2021. "Characterization and Impact of Waste Plastic Oil in a Variable Compression Ratio Diesel Engine," Energies, MDPI, vol. 14(8), pages 1-18, April.
    11. Maria Cristina Cameretti & Roberta De Robbio & Ezio Mancaruso & Marco Palomba, 2022. "CFD Study of Dual Fuel Combustion in a Research Diesel Engine Fueled by Hydrogen," Energies, MDPI, vol. 15(15), pages 1-21, July.
    12. Priyanka & Isobel E. Wood & Amthal Al-Gailani & Ben W. Kolosz & Kin Wai Cheah & Devika Vashisht & Surinder K. Mehta & Martin J. Taylor, 2024. "Cleaning Up Metal Contamination after Decades of Energy Production and Manufacturing: Reviewing the Value in Use of Biochars for a Sustainable Future," Sustainability, MDPI, vol. 16(20), pages 1-44, October.
    13. Singh, Thokchom Subhaschandra & Verma, Tikendra Nath, 2019. "Biodiesel production from Momordica Charantia (L.): Extraction and engine characteristics," Energy, Elsevier, vol. 189(C).
    14. Shuai Zhang & Haibo Hu & Xiangdong Jia & Xia Wang & Jianyu Chen & Can Cheng & Xichuan Jia & Zhaoming Wu & Li Zhu, 2022. "How Biochar Derived from Pond Cypress ( Taxodium Ascendens ) Evolved with Pyrolysis Temperature and Time and Their End Efficacy Evaluation," IJERPH, MDPI, vol. 19(18), pages 1-16, September.
    15. Liu, Shang & Lin, Zhelong & Zhang, Hao & Lei, Nuo & Qi, Yunliang & Wang, Zhi, 2023. "Impact of ammonia addition on knock resistance and combustion performance in a gasoline engine with high compression ratio," Energy, Elsevier, vol. 262(PA).
    16. Juan Matthews & William Bodel & Gregg Butler, 2024. "Nuclear Cogeneration to Support a Net-Zero, High-Renewable Electricity Grid," Energies, MDPI, vol. 17(24), pages 1-38, December.
    17. Laura Aguado-Deblas & Jesús Hidalgo-Carrillo & Felipa M. Bautista & Diego Luna & Carlos Luna & Juan Calero & Alejandro Posadillo & Antonio A. Romero & Rafael Estevez, 2020. "Diethyl Ether as an Oxygenated Additive for Fossil Diesel/Vegetable Oil Blends: Evaluation of Performance and Emission Quality of Triple Blends on a Diesel Engine," Energies, MDPI, vol. 13(7), pages 1-16, March.
    18. Wang, Shuang & Hwang, Sung-Chul & Yuan, Xiangzhou & Nam, Hyungseok, 2025. "Experimental investigation of oxy-combustion using plastic waste pyrolysis fuel for CO2 capture technology," Energy, Elsevier, vol. 325(C).
    19. Pinto, G.M. & da Costa, R.B.R. & de Souza, T.A.Z. & Rosa, A.J.A.C. & Raats, O.O. & Roque, L.F.A. & Frez, G.V. & Coronado, C.J.R., 2023. "Experimental investigation of performance and emissions of a CI engine operating with HVO and farnesane in dual-fuel mode with natural gas and biogas," Energy, Elsevier, vol. 277(C).
    20. Rajaeifar, Mohammad Ali & Tabatabaei, Meisam & Aghbashlo, Mortaza & Nizami, Abdul-Sattar & Heidrich, Oliver, 2019. "Emissions from urban bus fleets running on biodiesel blends under real-world operating conditions: Implications for designing future case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 276-292.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225005535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.