IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v324y2025ics0360544225015956.html
   My bibliography  Save this article

Research on fuel injection quantity fluctuation characteristics and optimization improvement of dual-fuel engines

Author

Listed:
  • He, Longguo
  • Gong, Wanru
  • Zhao, Jianhui

Abstract

The fluctuation of fuel injection quantity directly affects the power and economy of dual-fuel engines. Identifying key factors causing these fluctuations and improving injection stability are essential for better economy and emissions performance. This paper constructs and validates a high-pressure fuel injection system simulation model using a test platform. It examines the relationship between injection quantity fluctuations and needle action, finding that low injection pressure and narrow pulse width prevent rapid and full needle opening, leading to higher injection quantity fluctuation rate (IQFR). Specifically, low injection pressure reduces needle acceleration, while narrow pulse width limits needle ascent time. A data-driven model of IQFR is established using generalized regression neural network (GRNN) in combination with grey wolf optimizer (GWO). An optimization and improvement study is then carried out with the objective of reducing the fluctuation rate of the injection quantity. The results demonstrate that the maximum lift of the needle is diminished from 0.25 mm to 0.16 mm without a concomitant reduction in the maximum injection rate. The IQFR is diminished by a maximum of 13.3 % across the full range of operating conditions, achieving an enhancement in injection stability under conditions of low injection pressure and narrow injection pulse width.

Suggested Citation

  • He, Longguo & Gong, Wanru & Zhao, Jianhui, 2025. "Research on fuel injection quantity fluctuation characteristics and optimization improvement of dual-fuel engines," Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225015956
    DOI: 10.1016/j.energy.2025.135953
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225015956
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135953?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Pham, Quangkhai & Park, Sungwook & Agarwal, Avinash Kumar & Park, Suhan, 2022. "Review of dual-fuel combustion in the compression-ignition engine: Spray, combustion, and emission," Energy, Elsevier, vol. 250(C).
    2. Han, Dong & Wang, Chunhai & Duan, Yaozong & Tian, Zhisong & Huang, Zhen, 2014. "An experimental study of injection and spray characteristics of diesel and gasoline blends on a common rail injection system," Energy, Elsevier, vol. 75(C), pages 513-519.
    3. Aygun, Hakan & Kirmizi, Mehmet & Kilic, Ulas & Turan, Onder, 2023. "Multi-objective optimization of a small turbojet engine energetic performance," Energy, Elsevier, vol. 271(C).
    4. Lu, Xiangdong & Zhao, Jianhui & Markov, Vladimir & Wu, Tianyu, 2024. "Study on precise fuel injection under multiple injections of high pressure common rail system based on deep learning," Energy, Elsevier, vol. 307(C).
    5. Zhang, Shuanlu & Zhao, Zhenfeng & Zhao, Changlu & Zhang, Fujun & Wang, Shan, 2016. "Experimental study of hydraulic electronic unit injector in a hydraulic free piston engine," Applied Energy, Elsevier, vol. 179(C), pages 888-898.
    6. Liu, Junheng & Liang, Wenwen & Ma, Haoran & Ji, Qian & Xiang, Pan & Sun, Ping & Wang, Pan & Wei, Mingliang & Ma, Hongjie, 2023. "Effects of integrated aftertreatment system on regulated and unregulated emission characteristics of non-road methanol/diesel dual-fuel engine," Energy, Elsevier, vol. 282(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Hang & Zhai, Xiongfei & Liao, Zengbu & Li, Zichen & Song, Zhiping, 2025. "Gas turbine thrust estimation in sensor drift scenarios using a three-stage multi-target domain adaptation method," Energy, Elsevier, vol. 314(C).
    2. Maria Cristina Cameretti & Roberta De Robbio & Ezio Mancaruso & Marco Palomba, 2022. "CFD Study of Dual Fuel Combustion in a Research Diesel Engine Fueled by Hydrogen," Energies, MDPI, vol. 15(15), pages 1-21, July.
    3. Huang, Weidi & Wu, Zhijun & Gao, Ya & Zhang, Lin, 2015. "Effect of shock waves on the evolution of high-pressure fuel jets," Applied Energy, Elsevier, vol. 159(C), pages 442-448.
    4. Liu, Shang & Lin, Zhelong & Zhang, Hao & Lei, Nuo & Qi, Yunliang & Wang, Zhi, 2023. "Impact of ammonia addition on knock resistance and combustion performance in a gasoline engine with high compression ratio," Energy, Elsevier, vol. 262(PA).
    5. Pinto, G.M. & da Costa, R.B.R. & de Souza, T.A.Z. & Rosa, A.J.A.C. & Raats, O.O. & Roque, L.F.A. & Frez, G.V. & Coronado, C.J.R., 2023. "Experimental investigation of performance and emissions of a CI engine operating with HVO and farnesane in dual-fuel mode with natural gas and biogas," Energy, Elsevier, vol. 277(C).
    6. Kuo Jiang & Hong Zeng & Zefan Wu & Jianping Sun & Cai Chen & Bing Han, 2023. "Study on the Effect of Parameter Sensitivity on Engine Optimization Results," Energies, MDPI, vol. 16(23), pages 1-16, December.
    7. Xu, Lei & Wei, Yidi & Liu, Chang & Jia, Boru & Zhang, Zhiyuan & Qin, Shuo & Hu, Xiaoxu & Feng, Huihua & Zuo, Zhengxing, 2024. "Research on the implementation of free piston engine generator at various compression ratios and combustion performance of multiple fuels," Energy, Elsevier, vol. 313(C).
    8. Feng, Zehao & Zhan, Cheng & Tang, Chenglong & Yang, Ke & Huang, Zuohua, 2016. "Experimental investigation on spray and atomization characteristics of diesel/gasoline/ethanol blends in high pressure common rail injection system," Energy, Elsevier, vol. 112(C), pages 549-561.
    9. Lyu, Zhao & Tang, Xincheng & Zhang, Hucheng & Qiao, Xinqi & Jin, Zhiwei & Shi, Lei, 2024. "Experimental characterization on injection and spray of coal-derived liquid fuel," Energy, Elsevier, vol. 310(C).
    10. Zheng, Qiangang & Zhang, Hongwei & Hu, Chenxu & Zhang, Haibo, 2024. "Performance seeking control method for minimum pollutant emission mode for turbofan engine," Energy, Elsevier, vol. 289(C).
    11. Cheng, Qiang & Ahmad, Zeeshan & Grahn, Viljam & Hyvönen, Jari & Martti, Larmi & Kaario, Ossi, 2025. "Multi-scale optical diagnostics for marine diesel spray," Energy, Elsevier, vol. 317(C).
    12. Hongting Zhao & Zhiqing Zhang & Kai Lu & Yanshuai Ye & Sheng Gao, 2024. "Effects Analysis of FAME on the Engine Characteristics of Different Polymerized Biofuels in Compression Ignition Engine," Energies, MDPI, vol. 17(10), pages 1-30, May.
    13. Samuel Moveh & Emmanuel Alejandro Merchán-Cruz & Maher Abuhussain & Yakubu Aminu Dodo & Saleh Alhumaid & Ali Hussain Alhamami, 2025. "Deep Learning Framework Using Transformer Networks for Multi Building Energy Consumption Prediction in Smart Cities," Energies, MDPI, vol. 18(6), pages 1-22, March.
    14. Chintagunti, Sam Joe & Agarwal, Avinash Kumar, 2024. "Effect of ambient pressure on macroscopic and microscopic spray characteristics of gasoline-diesel blends for gasoline compression ignition engine applications," Applied Energy, Elsevier, vol. 376(PB).
    15. Jinyi Hu & Yongbao Liu & Xing He & Jianfeng Zhao & Shaojun Xia, 2024. "Application of NH 3 Fuel in Power Equipment and Its Impact on NO x Emissions," Energies, MDPI, vol. 17(12), pages 1-39, June.
    16. Zhu, Jizhen & Zhou, Dezhi & Yang, Wenming & Qian, Yong & Mao, Yebing & Lu, Xingcai, 2023. "Investigation on the potential of using carbon-free ammonia in large two-stroke marine engines by dual-fuel combustion strategy," Energy, Elsevier, vol. 263(PB).
    17. Deng, Banglin & Cai, Wenyu & Zhang, Wanxin & Bian, Li & Che, Xiangqian & Xiang, Yihua & Wu, Di, 2025. "A comprehensive investigation of EGR (exhaust gas recirculation) effects on energy distribution and emissions of a turbo-charging diesel engine under World Harmonized transient cycle," Energy, Elsevier, vol. 316(C).
    18. Nadimi, Ebrahim & Przybyła, Grzegorz & Løvås, Terese & Peczkis, Grzegorz & Adamczyk, Wojciech, 2023. "Experimental and numerical study on direct injection of liquid ammonia and its injection timing in an ammonia-biodiesel dual injection engine," Energy, Elsevier, vol. 284(C).
    19. Van Viet Pham & Duc Thiep Cao, 2019. "A Brief Review Of Technology Solutions On Fuel Injection System Of Diesel Engine To Increase The Power And Reduce Environmental Pollution," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(1), pages 1-9, January.
    20. Kagan Ayaz, S. & Caliskan, Hakan & Altuntas, Onder, 2023. "Environmental and second law analysis of a turbojet engine operating with different fuels," Energy, Elsevier, vol. 285(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225015956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.