IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v318y2025ics0360544225005080.html
   My bibliography  Save this article

Enhancing carbon chain extension of higher alcohols to jet fuels by surface hydrophobicity modification of HZSM-5

Author

Listed:
  • Liu, Zhonghai
  • Gong, Yuying
  • Jiang, Ting
  • Xiao, Chenglei
  • Pang, Yayun
  • Chen, Baozhu
  • Song, Jinliang
  • Wang, Tiejun

Abstract

Developing jet fuel through a one-step dehydration-oligomerization process using higher alcohols derived from bioethanol coupling is of paramount significance. This work aims to enhance zeolite hydrophobicity to facilitate carbon chain growth and improve the selectivity for C8-C16 hydrocarbons. The dehydration-oligomerization of butanol over octadecyltrichlorosilane-modified HZSM-5 zeolite (Z25-OTS) achieved a selectivity of 80.5 % for C8-C16 products, representing a 29.2 % increase over the parent Z25 zeolite. This improvement is attributed to its enhanced hydrophobicity, higher Brønsted/Lewis acidity, and increased adsorption of hydrocarbons. In practical mixed higher alcohol systems, the use of hydrophobic zeolites elevated the selectivity of C8-C16 components from 13.6 % to 57.5 %.

Suggested Citation

  • Liu, Zhonghai & Gong, Yuying & Jiang, Ting & Xiao, Chenglei & Pang, Yayun & Chen, Baozhu & Song, Jinliang & Wang, Tiejun, 2025. "Enhancing carbon chain extension of higher alcohols to jet fuels by surface hydrophobicity modification of HZSM-5," Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225005080
    DOI: 10.1016/j.energy.2025.134866
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225005080
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134866?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Shaoqu & Li, Zhuoxi & Luo, Shaojuan & Zhang, Wanli, 2024. "Bioethanol to jet fuel: Current status, challenges, and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Juwen Gu & Wanbing Gong & Qian Zhang & Ran Long & Jun Ma & Xinyu Wang & Jiawei Li & Jiayi Li & Yujian Fan & Xinqi Zheng & Songbai Qiu & Tiejun Wang & Yujie Xiong, 2023. "Enabling direct-growth route for highly efficient ethanol upgrading to long-chain alcohols in aqueous phase," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Díaz, Marta & Epelde, Eva & Tabernilla, Zuria & Ateka, Ainara & Aguayo, Andrés T. & Bilbao, Javier, 2020. "Operating conditions to maximize clean liquid fuels yield by oligomerization of 1-butene on HZSM-5 zeolite catalysts," Energy, Elsevier, vol. 207(C).
    4. Candelaria Bergero & Greer Gosnell & Dolf Gielen & Seungwoo Kang & Morgan Bazilian & Steven J. Davis, 2023. "Pathways to net-zero emissions from aviation," Nature Sustainability, Nature, vol. 6(4), pages 404-414, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoelzen, J. & Silberhorn, D. & Schenke, F. & Stabenow, E. & Zill, T. & Bensmann, A. & Hanke-Rauschenbach, R., 2025. "H2-powered aviation – Optimized aircraft and green LH2 supply in air transport networks," Applied Energy, Elsevier, vol. 380(C).
    2. Li, Wei & Wang, Ting & Lu, Can, 2023. "Pathways to net-zero emissions from China's transportation industry: Considering alternative fuels," Energy, Elsevier, vol. 283(C).
    3. Akter, Hosne Ara & Huang, Yu-Kai & Dwivedi, Puneet, 2025. "Developing a supply chain model for sustainable aviation fuel using logging residues in Georgia, United States," Forest Policy and Economics, Elsevier, vol. 170(C).
    4. Xu, Lang & Wu, Jiyuan & Yan, Ran & Chen, Jihong, 2025. "Is international shipping in right direction towards carbon emissions control?," Transport Policy, Elsevier, vol. 166(C), pages 189-201.
    5. Zheng, Shiyuan & Wang, Chunan & Jiang, Changmin, 2024. "Carrot or stick? Environmental and welfare implications of sustainable aviation fuel policies," Transportation Research Part B: Methodological, Elsevier, vol. 188(C).
    6. Xu, Yuchao & Zhang, Yahua & Deng, Xin & Lee, Seung-Yong & Wang, Kun & Li, Linbo, 2025. "Bibliometric analysis and literature review on sustainable aviation fuel (SAF): Economic and management perspective," Transport Policy, Elsevier, vol. 162(C), pages 296-312.
    7. Liu, Peng & Yang, Tianyan & Zheng, Hongbin & Huang, Xiang & Wang, Xuan & Qiu, Tian & Ding, Shuiting, 2024. "Thermodynamic analysis of power generation thermal management system for heat and cold exergy utilization from liquid hydrogen-fueled turbojet engine," Applied Energy, Elsevier, vol. 365(C).
    8. Tabernilla, Zuria & Ateka, Ainara & Bilbao, Javier & Aguayo, Andrés T. & Epelde, Eva, 2023. "Performance of HZSM-5 agglomerated in a mesoporous matrix in the fuel production from ethylene at atmospheric pressure," Energy, Elsevier, vol. 284(C).
    9. Nicoletta Brazzola & Amir Meskaldji & Anthony Patt & Tim Tröndle & Christian Moretti, 2025. "The role of direct air capture in achieving climate-neutral aviation," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    10. Shadbahr, Jalil & Peeples, Craig A. & Pahija, Ergys & Panaritis, Christopher & Boffito, Daria Camilla & Patience, Gregory & Bensebaa, Farid, 2025. "Sustainability assessment of catalyst design on CO2-derived fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    11. Li, Fangyi & Li, Fei & Cai, Bofeng & Lyu, Chen & Xie, Wu, 2024. "Role of Chinese cities in abating aviation carbon emissions based on gridded population data and power law model," Energy, Elsevier, vol. 288(C).
    12. Phoebe Koundouri & Angelos Alamanos & Giannis Arampatzidis & Stathis Devves & Kostas Dellis & Christopher Deranian & Tatiana Pliakou, 2025. "An Integrated Assessment of the European National Commitments for Climate Neutrality," DEOS Working Papers 2548, Athens University of Economics and Business.
    13. Zhao, Congyu & Dong, Kangyin & Wang, Kun & Dong, Xiucheng, 2023. "Can low-carbon energy technology lead to energy resource carrying capacity improvement? The case of China," Energy Economics, Elsevier, vol. 127(PA).
    14. Guan, Hong & Saadé, Raafat George & Liu, Hao, 2024. "Empirical analysis of Manager's perceptions towards aviation carbon emissions reduction," Journal of Air Transport Management, Elsevier, vol. 114(C).
    15. Bardon, Paul & Massol, Olivier, 2025. "Decarbonizing aviation with sustainable aviation fuels: Myths and realities of the roadmaps to net zero by 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    16. Wang, Jiqiang & Wang, Ya & Zhang, Shaohui & Fan, Chun & Zhou, Nanqing & Liu, Jinhui & Li, Xin & Liu, Yun & Hou, Xiujun & Yi, Bowen, 2024. "Accounting of aviation carbon emission in developing countries based on flight-level ADS-B data," Applied Energy, Elsevier, vol. 358(C).
    17. Zhang, Peiwen & Ding, Rui, 2023. "How to achieve carbon abatement in aviation with hybrid mechanism? A stochastic evolutionary game model," Energy, Elsevier, vol. 285(C).
    18. Simone Speizer & Jay Fuhrman & Laura Aldrete Lopez & Mel George & Page Kyle & Seth Monteith & Haewon McJeon, 2024. "Integrated assessment modeling of a zero-emissions global transportation sector," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Zhang, Bin & Niu, Niu & Li, Hao & Wang, Zhaohua, 2023. "Assessing the efforts of coal phaseout for carbon neutrality in China," Applied Energy, Elsevier, vol. 352(C).
    20. Xie, Shaoqu & Li, Zhuoxi & Luo, Shaojuan & Zhang, Wanli, 2024. "Bioethanol to jet fuel: Current status, challenges, and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225005080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.