IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v318y2025ics0360544225004591.html
   My bibliography  Save this article

Squirrel search-based optimization of energy storage systems for electric vehicle charging stations

Author

Listed:
  • Gorityala, Aishvaria
  • Radhika, Sudha
  • Bhattacharjee, Ankur
  • Mukherjee, Joyjit

Abstract

Battery Energy Storage System (BESS) is essential for regular and backup power supply in Electric Vehicle Charging Infrastructure (EVCI). Determining an appropriate BESS size is a key to cost-effective and efficient power supply solutions, particularly when incorporating renewable energy sources. The present work offers a novel Squirrel Search-Based Recursive Control Model (SSbRCM) to optimize the BESS size, considering practical aspects such as net metering, feed-in tariffs, net purchase and sale mechanisms, and Time-of-Use (ToU) pricing. In addition, the work involves solar PV integration and thereby it is capable of an optimal battery size of 39.51 kWh with a minimal cost of $ 29.13. The key novelty of this study is designing the squirrel based recursive control model for optimizing the BESS size. Here, the squirrel function was operated continuous till the desired optimal BESS size was found, that provided the better outcome than the previous model. The findings are compared to standard approaches such as Genetic Optimization (GO), Particle Swarm Model (PSM), and Modified Alternate Direction Multiplier Method (MADMA), and it is shown that the proposed model outperforms all of the aforementioned models. The Proposed optimization model exhibits a lower calculation time of 14.6 s and much-reduced error rate of 5.75 x 10−4. Thus, SSbRCM offers a faster convergence rate, reduced calculation time, and determination of the optimal battery size, making it a leading solution for BESS optimization in EVCI.

Suggested Citation

  • Gorityala, Aishvaria & Radhika, Sudha & Bhattacharjee, Ankur & Mukherjee, Joyjit, 2025. "Squirrel search-based optimization of energy storage systems for electric vehicle charging stations," Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225004591
    DOI: 10.1016/j.energy.2025.134817
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225004591
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134817?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    2. Ziad M. Ali & Martin Calasan & Shady H. E. Abdel Aleem & Francisco Jurado & Foad H. Gandoman, 2023. "Applications of Energy Storage Systems in Enhancing Energy Management and Access in Microgrids: A Review," Energies, MDPI, vol. 16(16), pages 1-41, August.
    3. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    4. Li, Chengzhe & Zhang, Libo & Ou, Zihan & Wang, Qunwei & Zhou, Dequn & Ma, Jiayu, 2022. "Robust model of electric vehicle charging station location considering renewable energy and storage equipment," Energy, Elsevier, vol. 238(PA).
    5. Meng, Weiqi & Song, Dongran & Huang, Liansheng & Chen, Xiaojiao & Yang, Jian & Dong, Mi & Talaat, M. & Elkholy, M.H., 2024. "Distributed energy management of electric vehicle charging stations based on hierarchical pricing mechanism and aggregate feasible regions," Energy, Elsevier, vol. 291(C).
    6. Khaled Obaideen & Abdul Ghani Olabi & Yaser Al Swailmeen & Nabila Shehata & Mohammad Ali Abdelkareem & Abdul Hai Alami & Cristina Rodriguez & Enas Taha Sayed, 2023. "Solar Energy: Applications, Trends Analysis, Bibliometric Analysis and Research Contribution to Sustainable Development Goals (SDGs)," Sustainability, MDPI, vol. 15(2), pages 1-34, January.
    7. Zare Ghaleh Seyyedi, Abbas & Akbari, Ehsan & Mahmoudi Rashid, Sara & Nejati, Seyed Ashkan & Gitizadeh, Mohsen, 2024. "Application of robust optimized spatiotemporal load management of data centers for renewable curtailment mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    8. Xie, Peng & Jia, Youwei & Lyu, Cheng & Wang, Han & Shi, Mengge & Chen, Hongkun, 2022. "Optimal sizing of renewables and battery systems for hybrid AC/DC microgrids based on variability management," Applied Energy, Elsevier, vol. 321(C).
    9. Zhang, Meijuan & Yan, Qingyou & Guan, Yajuan & Ni, Da & Agundis Tinajero, Gibran David, 2024. "Joint planning of residential electric vehicle charging station integrated with photovoltaic and energy storage considering demand response and uncertainties," Energy, Elsevier, vol. 298(C).
    10. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yanbin & Wang, Jiani & Wang, Weiye & Liu, Chang & Li, Yun, 2023. "Dynamic pricing based electric vehicle charging station location strategy using reinforcement learning," Energy, Elsevier, vol. 281(C).
    2. Clairand, Jean-Michel & González-Rodríguez, Mario & Kumar, Rajesh & Vyas, Shashank & Escrivá-Escrivá, Guillermo, 2022. "Optimal siting and sizing of electric taxi charging stations considering transportation and power system requirements," Energy, Elsevier, vol. 256(C).
    3. Garau, Michele & Torsæter, Bendik Nybakk, 2024. "A methodology for optimal placement of energy hubs with electric vehicle charging stations and renewable generation," Energy, Elsevier, vol. 304(C).
    4. Young-Eun Jeon & Suk-Bok Kang & Jung-In Seo, 2022. "Hybrid Predictive Modeling for Charging Demand Prediction of Electric Vehicles," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
    5. Jiehong Lou & Xingchi Shen & Deb A. Niemeier & Nathan Hultman, 2024. "Income and racial disparity in household publicly available electric vehicle infrastructure accessibility," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Güven, Aykut Fatih, 2024. "Integrating electric vehicles into hybrid microgrids: A stochastic approach to future-ready renewable energy solutions and management," Energy, Elsevier, vol. 303(C).
    7. Huang, Qisheng & Xu, Yunjian & Courcoubetis, Costas, 2020. "Stackelberg competition between merchant and regulated storage investment in wholesale electricity markets," Applied Energy, Elsevier, vol. 264(C).
    8. Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
    10. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    11. Taher Maatallah & Mussad Alzahrani & Souheil El Alimi & Sajid Ali, 2025. "Optothermal Modeling for Sustainable Design of Ultrahigh-Concentration Photovoltaic Systems," Sustainability, MDPI, vol. 17(12), pages 1-20, June.
    12. Boyu Xiang & Zhengyang Zhou & Shukun Gao & Guoping Lei & Zefu Tan, 2024. "A Planning Method for Charging Station Based on Long-Term Charging Load Forecasting of Electric Vehicles," Energies, MDPI, vol. 17(24), pages 1-20, December.
    13. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    14. Gu, Bo & Li, Fangxing & Mao, Chengxiong & Wang, Dan & Fan, Hua & Liu, Bin & Li, Wenhao, 2025. "A Bilevel robust coordination model for community integrated energy system with access to HFCEVs and EVs," Applied Energy, Elsevier, vol. 390(C).
    15. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    16. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    17. Yang, Jibin & Xu, Xiaohui & Peng, Yiqiang & Zhang, Jiye & Song, Pengyun, 2019. "Modeling and optimal energy management strategy for a catenary-battery-ultracapacitor based hybrid tramway," Energy, Elsevier, vol. 183(C), pages 1123-1135.
    18. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    19. Jayaraj, Nikhil & Klarin, Anton & Ananthram, Subramaniam, 2024. "The transition towards solar energy storage: a multi-level perspective," Energy Policy, Elsevier, vol. 192(C).
    20. Pejman Bahramian, 2021. "Integration of wind power into an electricity system using pumped-storage: Economic challenges and stakeholder impacts," Working Paper 1480, Economics Department, Queen's University.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225004591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.