IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v318y2025ics0360544225004438.html
   My bibliography  Save this article

Zero-carbon and carbon neutral fuels applied on a linear range extender with multi-fuel adaptability

Author

Listed:
  • Zhang, Zhiyuan
  • Xu, Lei
  • Wei, Yidi
  • Ma, Yuguo
  • Feng, Huihua
  • Jia, Boru
  • He, Hongwen

Abstract

This study employs a combined analytical and numerical approach to examine the multi-fuel adaptability of the linear range extender system(LRE). The operation and performance characteristics of the LRE system was studied when adopting fossil fuels, carbon-neutral fuels, and zero-carbon fuels. The results showed that the peak piston velocity is maximized with gasoline fuel, achieving a velocity of 6.26 m/s, while the maximum average operating velocity with natural gas fuel is recorded at 5.31 m/s. In terms of output power, gasoline fuel also demonstrates superior performance, reaching a peak of 2.83 kW. For carbon-neutral fuels, the dead centre positions exhibit close proximity, with velocity-displacement relationships remaining largely consistent across different carbon-neutral fuel types. Notably, when utilizing dimethyl ether as fuel, both the peak piston velocity (6.48 m/s) and the average operating velocity (5.33 m/s) attain optimal levels. Additionally, under dimethyl ether fuel conditions, the operating frequency, output power, and friction loss power are maximized at 51.36 Hz, 3.14 kW, and 0.160 kW, respectively. The stable operating range of the system is identified as 126–492 N/(m/s) for one profile and 36–122 N/(m/s) for another. In the prototype design phase of the LRE system, achieving multi-fuel adaptability requires careful consideration not only of design parameters that align with the combustion characteristics of the respective fuels but also of the stable operational load range of the system, which is equally critical for optimal performance.

Suggested Citation

  • Zhang, Zhiyuan & Xu, Lei & Wei, Yidi & Ma, Yuguo & Feng, Huihua & Jia, Boru & He, Hongwen, 2025. "Zero-carbon and carbon neutral fuels applied on a linear range extender with multi-fuel adaptability," Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225004438
    DOI: 10.1016/j.energy.2025.134801
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225004438
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134801?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jian & Zuo, Zhengxing & Liu, Wenzhen & Jia, Boru & Feng, Huihua & Wang, Wei & Smallbone, Andrew & Roskilly, Anthony Paul, 2023. "Generating performance of a tubular permanent magnet linear generator for application on free-piston engine generator prototype with wide-ranging operating parameters," Energy, Elsevier, vol. 278(C).
    2. Chen, Longfei & Ding, Shirun & Liu, Haoye & Lu, Yiji & Li, Yanfei & Roskilly, Anthony Paul, 2017. "Comparative study of combustion and emissions of kerosene (RP-3), kerosene-pentanol blends and diesel in a compression ignition engine," Applied Energy, Elsevier, vol. 203(C), pages 91-100.
    3. Zhuang, Weichao & Li (Eben), Shengbo & Zhang, Xiaowu & Kum, Dongsuk & Song, Ziyou & Yin, Guodong & Ju, Fei, 2020. "A survey of powertrain configuration studies on hybrid electric vehicles," Applied Energy, Elsevier, vol. 262(C).
    4. Wu, Wei & Hu, Jibin & Yuan, Shihua, 2014. "Semi-analytical modelling of a hydraulic free-piston engine," Applied Energy, Elsevier, vol. 120(C), pages 75-84.
    5. Zhen, Xudong & Wang, Yang, 2015. "An overview of methanol as an internal combustion engine fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 477-493.
    6. Thakur, Amit Kumar & Kaviti, Ajay Kumar & Mehra, Roopesh & Mer, K.K.S., 2017. "Progress in performance analysis of ethanol-gasoline blends on SI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 324-340.
    7. Bireswar Dutta & Hsin-Ginn Hwang, 2021. "Consumers Purchase Intentions of Green Electric Vehicles: The Influence of Consumers Technological and Environmental Considerations," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhanming & Zhang, Tiancong & Wang, Xiaochen & Chen, Hao & Geng, Limin & Zhang, Teng, 2021. "A comparative study of combustion performance and emissions of dual-fuel engines fueled with natural gas/methanol and natural gas/gasoline," Energy, Elsevier, vol. 237(C).
    2. Han, Dandan & E, Jiaqiang & Deng, Yuanwang & Chen, Jingwei & Leng, Erwei & Liao, Gaoliang & Zhao, Xiaohuan & Feng, Changling & Zhang, Feng, 2021. "A review of studies using hydrocarbon adsorption material for reducing hydrocarbon emissions from cold start of gasoline engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Wang, Jiayu & Liu, Chang & Feng, Huihua & Jia, Boru & Zhang, Zhiyuan & Wei, Yidi, 2024. "Transient dynamic cycle evolution and thermodynamic performance analysis of a free-piston engine generator," Energy, Elsevier, vol. 313(C).
    4. Kumar, T. Sathish & Ashok, B., 2021. "Critical review on combustion phenomena of low carbon alcohols in SI engine with its challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Liu, Chang & Zou, Run & Hu, Xiaoxu & Wei, Shuojian & Wei, Yidi & Jia, Boru & Zuo, Zhengxing & Wang, Wei & Feng, Huihua, 2025. "Effect of ignition timing on engine performance of a linear range extender: An experimental study fueled with methanol," Energy, Elsevier, vol. 318(C).
    6. Chen, Jie & Wang, Ruochen & Ding, Renkai & Luo, Ding, 2024. "Matching design and numerical optimization of automotive thermoelectric generator system applied to range-extended electric vehicle," Applied Energy, Elsevier, vol. 370(C).
    7. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    8. Fonseca, Camila & Jiang, Haiyue & Zeerak, Raihana & Zhao, Jerry Zhirong, 2024. "Explaining the adoption of electric vehicle fees across the United States," Transport Policy, Elsevier, vol. 149(C), pages 139-149.
    9. Shi, Zhicheng & Lee, Chia-fon & Wu, Han & Wu, Yang & Zhang, Lu & Liu, Fushui, 2019. "Optical diagnostics of low-temperature ignition and combustion characteristics of diesel/kerosene blends under cold-start conditions," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    11. Chien-Chi Lin & Chih-Ming Dong, 2023. "Exploring Consumers’ Purchase Intention on Energy-Efficient Home Appliances: Integrating the Theory of Planned Behavior, Perceived Value Theory, and Environmental Awareness," Energies, MDPI, vol. 16(6), pages 1-16, March.
    12. Ganesh, Ibram, 2016. "Electrochemical conversion of carbon dioxide into renewable fuel chemicals – The role of nanomaterials and the commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1269-1297.
    13. Ruyu Xie & Liren An & Nosheena Yasir, 2022. "How Innovative Characteristics Influence Consumers’ Intention to Purchase Electric Vehicle: A Moderating Role of Lifestyle," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
    14. Zhang, Shuanlu & Zhao, Zhenfeng & Zhao, Changlu & Zhang, Fujun & Wang, Shan, 2016. "Experimental study of hydraulic electronic unit injector in a hydraulic free piston engine," Applied Energy, Elsevier, vol. 179(C), pages 888-898.
    15. Chih-Ming Tsai & Wen-Yang Kao & Wei-Chi Liu, 2025. "Navigating Sustainable Mobility in Taiwan: Exploring the Brand-Specific Effects of Perceived Green Attributes on the Green Purchase Intention for Battery Electric Vehicles," Sustainability, MDPI, vol. 17(3), pages 1-22, January.
    16. Zhang, Hao & Chen, Boli & Lei, Nuo & Li, Bingbing & Chen, Chaoyi & Wang, Zhi, 2024. "Coupled velocity and energy management optimization of connected hybrid electric vehicles for maximum collective efficiency," Applied Energy, Elsevier, vol. 360(C).
    17. Wang, Chenyao & Zhang, Fujun & Wang, Enhua & Yu, Chuncun & Gao, Hongli & Liu, Bolan & Zhao, Zhenfeng & Zhao, Changlu, 2019. "Experimental study on knock suppression of spark-ignition engine fuelled with kerosene via water injection," Applied Energy, Elsevier, vol. 242(C), pages 248-259.
    18. García, Antonio & Monsalve-Serrano, Javier & Martinez-Boggio, Santiago & Gaillard, Patrick, 2021. "Emissions reduction by using e-components in 48 V mild hybrid trucks under dual-mode dual-fuel combustion," Applied Energy, Elsevier, vol. 299(C).
    19. Shen, Bo & Su, Yan & Yu, Hao & Zhang, Yulin & Lang, Maochun & Yang, He, 2023. "Experimental study on the effect of injection strategies on the combustion and emissions characteristic of gasoline/methanol dual-fuel turbocharged engine under high load," Energy, Elsevier, vol. 282(C).
    20. Wei, Jiangjun & He, Chengjun & Lv, Gang & Zhuang, Yuan & Qian, Yejian & Pan, Suozhu, 2021. "The combustion, performance and emissions investigation of a dual-fuel diesel engine using silicon dioxide nanoparticle additives to methanol," Energy, Elsevier, vol. 230(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225004438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.