IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v318y2025ics0360544225004086.html
   My bibliography  Save this article

Design, thermal performance evaluation, and economic analysis of a new solar air dryer suitable for high latitude regions

Author

Listed:
  • Hu, Wentao
  • Alekhin, Vladimir N
  • Huang, Yue
  • Meng, Tianxin
  • Du, Yang

Abstract

Seasonal solar energy in high-latitude regions has great potential for development, particularly in the field of drying agricultural products using solar-air dryers. However, the intermittency of solar energy and geographical conditions at high latitudes significantly reduce the heat-collection performance, drying efficiency, and economic benefits of typical solar air dryers (Type 1). Therefore, in order to improve the aforementioned indicators of solar air dryers, this study comprehensively considered the geographical conditions of high latitudes, seasonal sunshine conditions, and thermal characteristics of phase change materials (PCM) to design a new solar air dryer model (Type 2) suitable for high latitudes. A new model was constructed, and a mushroom-drying experiment was conducted. A comparison and analysis of the thermal performance and economic indicators demonstrated that the Type 2 PCM layer stored 3.453 × 105 J of heat energy after only 2.3 h, which was conducive to ensuring the continuous drying ability of the drying box at night. The average daily heat collection efficiency of Type 2 was 19.88 % lower than that of Type 1, indicating that the Type 2 dryer exhibited a good thermal peak transfer capacity, which transferred the heat energy of the solar day to the night. The drying time of the Type 2 dryer was 31.11 h, which was 5.15 h less than that of the Type 1 dryer, indicating that the Type 2 dryer had a higher drying rate. The Type 2 dryer exhibited a cost recovery period of 0.22 years, a daily profit of 29.95 USB, and a total profit of 26,658.69 USB over its life cycle, which was 3987.68 USB higher than Type 1. This demonstrates that the Type 2 dryer has better economic benefits, which greatly enhances the market competitiveness of the product.

Suggested Citation

  • Hu, Wentao & Alekhin, Vladimir N & Huang, Yue & Meng, Tianxin & Du, Yang, 2025. "Design, thermal performance evaluation, and economic analysis of a new solar air dryer suitable for high latitude regions," Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225004086
    DOI: 10.1016/j.energy.2025.134766
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225004086
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134766?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Moussaoui, Haytem & Bahammou, Younes & Tagnamas, Zakaria & Kouhila, Mounir & Lamharrar, Abdelkader & Idlimam, Ali, 2021. "Application of solar drying on the apple peels using an indirect hybrid solar-electrical forced convection dryer," Renewable Energy, Elsevier, vol. 168(C), pages 131-140.
    2. Duque-Dussán, Eduardo & Sanz-Uribe, Juan R. & Banout, Jan, 2023. "Design and evaluation of a hybrid solar dryer for postharvesting processing of parchment coffee," Renewable Energy, Elsevier, vol. 215(C).
    3. Rani, Poonam & Tripathy, P.P., 2023. "CFD coupled heat and mass transfer simulation of pineapple drying process using mixed-mode solar dryers integrated with flat plate and finned collector," Renewable Energy, Elsevier, vol. 217(C).
    4. Rosenbloom, Daniel & Meadowcroft, James, 2014. "Harnessing the Sun: Reviewing the potential of solar photovoltaics in Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 488-496.
    5. Rahimi Telwar, Donya & Khodaei, Jalal & Samimi-Akhijahani, Hadi, 2024. "Thermo-economic evaluation and structural simulation of a parabolic solar collector (PTC) integrated with a desalination system," Energy, Elsevier, vol. 299(C).
    6. Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang, 2024. "A comprehensive review of hybrid solar dryers integrated with auxiliary energy and units for agricultural products," Energy, Elsevier, vol. 293(C).
    7. Yang, Ying & Campana, Pietro Elia & Stridh, Bengt & Yan, Jinyue, 2020. "Potential analysis of roof-mounted solar photovoltaics in Sweden," Applied Energy, Elsevier, vol. 279(C).
    8. El-Sebaey, Mahmoud S., 2024. "Proposing novel approach for indirect solar dryer integrated with active-fan and passive-chimney: An experimental and analytical investigation," Energy, Elsevier, vol. 304(C).
    9. Ermolenko, Boris V. & Ermolenko, Georgy V. & Fetisova, Yulia A. & Proskuryakova, Liliana N., 2017. "Wind and solar PV technical potentials: Measurement methodology and assessments for Russia," Energy, Elsevier, vol. 137(C), pages 1001-1012.
    10. Hu, Wentao & Alekhin, Vladimir Nickolaevich & Du, Yang, 2024. "Optimal design and thermal performance evaluation of phase change material filling position for solar air collectors," Renewable Energy, Elsevier, vol. 231(C).
    11. Shoeibi, Shahin & Kargarsharifabad, Hadi & Mirjalily, Seyed Ali Agha & Zargarazad, Mojtaba, 2021. "Performance analysis of finned photovoltaic/thermal solar air dryer with using a compound parabolic concentrator," Applied Energy, Elsevier, vol. 304(C).
    12. Hu, Wentao & Nickolaevich, Alekhin Vladimir & Huang, Yue & Hou, Chaoping, 2023. "Design and thermal performance evaluation of a new solar air collector with comprehensive consideration of five factors of phase-change materials and copper foam combination," Applied Energy, Elsevier, vol. 344(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prakash, R. & Gnanasekaran, Arulmurugan & Rengasamy, Marimuthu & Rajaram, Kamatchi, 2025. "A review on recent developments in natural convective solar dryer for agricultural products: Methods, collector design, influencing factors, performance and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Shiwei & Han, Ruilian & Zhang, Junjie, 2023. "Reassessment of the potential for centralized and distributed photovoltaic power generation in China: On a prefecture-level city scale," Energy, Elsevier, vol. 262(PA).
    2. Claudio Moscoloni & Fernando Zarra & Riccardo Novo & Enrico Giglio & Alberto Vargiu & Guglielmina Mutani & Giovanni Bracco & Giuliana Mattiazzo, 2022. "Wind Turbines and Rooftop Photovoltaic Technical Potential Assessment: Application to Sicilian Minor Islands," Energies, MDPI, vol. 15(15), pages 1-35, July.
    3. Zou, Dongjin & Chen, Xiao & Gu, Zhipan & Jiang, Qingyang & Chen, Hongyao & Zhao, Lianjin & Hou, Jingxin & Ji, Wentao & Luo, Zhen & Zhu, Lexin, 2025. "Modeling and comparative analysis of solar drying behavior of yam (Rhizoma dioscoreae) slices," Renewable Energy, Elsevier, vol. 242(C).
    4. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    5. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Victoria I. Bushukina, 2021. "Specific Features of Renewable Energy Development in the World and Russia," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 5, pages 93-107, October.
    7. He, Yi & Guo, Su & Zhou, Jianxu & Wu, Feng & Huang, Jing & Pei, Huanjin, 2021. "The many-objective optimal design of renewable energy cogeneration system," Energy, Elsevier, vol. 234(C).
    8. Pan, Zhan & Zhang, Lefeng & Dong, Linxin & Xu, Wei & Li, Guorong & Yuan, Yuan & Wang, Congxiao & Yu, Bailang, 2025. "Exploring the seasonal impact of photovoltaic roofs on urban land surface temperature under different urban spatial forms," Renewable Energy, Elsevier, vol. 244(C).
    9. Zhang, Tingsheng & Qi, Lingfei & Zhang, Zutao & Yan, Jinyue, 2024. "A portable balloon integrated photovoltaic system deployed at low altitude," Energy, Elsevier, vol. 313(C).
    10. Lanshina, T. & Slivyak, V. & Strelkova, S., 2022. "Russian electric power industry until 2035: On the way to full transition to renewable energy sources," Journal of the New Economic Association, New Economic Association, vol. 56(4), pages 223-2294.
    11. Aktekeli, Burak & Aktaş, Mustafa & Koşan, Meltem & Arslan, Erhan & Şevik, Seyfi, 2025. "Experimental study of a novel design bi-fluid based photovoltaic thermal (PVT)-assisted heat pump dryer," Renewable Energy, Elsevier, vol. 238(C).
    12. Prakash, R. & Gnanasekaran, Arulmurugan & Rengasamy, Marimuthu & Rajaram, Kamatchi, 2025. "A review on recent developments in natural convective solar dryer for agricultural products: Methods, collector design, influencing factors, performance and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    13. Askar A. Akaev & Olga I. Davydova, 2021. "Mathematical Description of Energy Transition Scenarios Based on the Latest Technologies and Trends," Energies, MDPI, vol. 14(24), pages 1-25, December.
    14. Zahra Parhizi & Hamed Karami & Iman Golpour & Mohammad Kaveh & Mariusz Szymanek & Ana M. Blanco-Marigorta & José Daniel Marcos & Esmail Khalife & Stanisław Skowron & Nashwan Adnan Othman & Yousef Darv, 2022. "Modeling and Optimization of Energy and Exergy Parameters of a Hybrid-Solar Dryer for Basil Leaf Drying Using RSM," Sustainability, MDPI, vol. 14(14), pages 1-27, July.
    15. Barbón, A. & Bayón-Cueli, C. & Bayón, L. & Rodríguez-Suanzes, C., 2022. "Analysis of the tilt and azimuth angles of photovoltaic systems in non-ideal positions for urban applications," Applied Energy, Elsevier, vol. 305(C).
    16. Antonio Barragán-Escandón & Julio Terrados-Cepeda & Esteban Zalamea-León, 2017. "The Role of Renewable Energy in the Promotion of Circular Urban Metabolism," Sustainability, MDPI, vol. 9(12), pages 1-29, December.
    17. Zhang, Chen & Li, Zhixin & Jiang, Haihua & Luo, Yongqiang & Xu, Shen, 2021. "Deep learning method for evaluating photovoltaic potential of urban land-use: A case study of Wuhan, China," Applied Energy, Elsevier, vol. 283(C).
    18. Klimenko, V.V. & Fedotova, E.V. & Tereshin, A.G., 2018. "Vulnerability of the Russian power industry to the climate change," Energy, Elsevier, vol. 142(C), pages 1010-1022.
    19. Rosenbloom, Daniel & Berton, Harris & Meadowcroft, James, 2016. "Framing the sun: A discursive approach to understanding multi-dimensional interactions within socio-technical transitions through the case of solar electricity in Ontario, Canada," Research Policy, Elsevier, vol. 45(6), pages 1275-1290.
    20. Bin Yang & Weiguo Jia & Yi Yu & Hui Zhang, 2024. "Sustainability Assessment of Agricultural Waste Biogas Production System in China Based on Emergy and Carbon Evaluation Methods," Agriculture, MDPI, vol. 14(11), pages 1-19, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225004086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.