IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v317y2025ics0360544225003512.html
   My bibliography  Save this article

Degradation and performance recovery of 150 kW dual-stack proton exchange membrane fuel cell system for heavy-duty truck applications

Author

Listed:
  • Tang, Tingjiang
  • Lu, Chihua
  • Xiao, Chenguang
  • Wang, Zhongguo
  • Zhang, Fengjiao
  • Yu, Jing
  • Chen, Hong
  • Luo, Maji

Abstract

The durability tests for a proton exchange membrane fuel cell (PEMFC) system comprised with dual stacks connected in series for an external power supply are rarely performed. A PEMFC system (150 kW) with dual stacks was researched under automotive proton exchange membrane fuel cell decay-accelerated test condition (DAC) with the aim of analyzing the mechanism of the effect of vertical arrangement on the stacks’ durability and proposing mitigation options. In addition, the ability of the hydrogen-air dual-chamber purge method to recover the system performance was also researched. The DAC test with 2000 h shows that the PEMFC stack located at the top of the system (called upper stack) has a higher output voltage and better single-cell voltage uniformity than the one located at the lower portion of the system (called lower stack), which is due to the non-uniform distribution of condensate in the hydrogen distribution manifolds between the substacks. Increasing the anode inlet temperature to 70 °C by a plate heat exchanger improves the voltage uniformity of the lower stack by 14.1 % and the minimum CVM voltage by 20 mV, narrowing the performance difference between stacks in the PEMFC system. In addition, the experimental results show that after performance degradation, the hydrogen-air dual chamber purge can improve the rated output voltage of the system as well as the voltage uniformity of the lower stack.

Suggested Citation

  • Tang, Tingjiang & Lu, Chihua & Xiao, Chenguang & Wang, Zhongguo & Zhang, Fengjiao & Yu, Jing & Chen, Hong & Luo, Maji, 2025. "Degradation and performance recovery of 150 kW dual-stack proton exchange membrane fuel cell system for heavy-duty truck applications," Energy, Elsevier, vol. 317(C).
  • Handle: RePEc:eee:energy:v:317:y:2025:i:c:s0360544225003512
    DOI: 10.1016/j.energy.2025.134709
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225003512
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134709?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jiao, Jieran & Chen, Fengxiang, 2022. "Humidity estimation of vehicle proton exchange membrane fuel cell under variable operating temperature based on adaptive sliding mode observation," Applied Energy, Elsevier, vol. 313(C).
    2. Fan, Lixin & liu, Yang & Luo, Xiaobing & Tu, Zhengkai & Chan, Siew Hwa, 2023. "A novel gas supply configuration for hydrogen utilization improvement in a multi-stack air-cooling PEMFC system with dead-ended anode," Energy, Elsevier, vol. 282(C).
    3. Wang, Chuang & Liu, Mingkun & Li, Zengqun & Xing, Ziwen & Shu, Yue, 2023. "Performance improvement of twin-screw air expander used in PEMFC systems by two-phase expansion," Energy, Elsevier, vol. 273(C).
    4. Chu, Tiankuo & Wang, Qinpu & Xie, Meng & Wang, Baoyun & Yang, Daijun & Li, Bing & Ming, Pingwen & Zhang, Cunman, 2022. "Investigation of the reversible performance degradation mechanism of the PEMFC stack during long-term durability test," Energy, Elsevier, vol. 258(C).
    5. Chu, Tiankuo & Xie, Meng & Yu, Yue & Wang, Baoyun & Yang, Daijun & Li, Bing & Ming, Pingwen & Zhang, Cunman, 2022. "Experimental study of the influence of dynamic load cycle and operating parameters on the durability of PEMFC," Energy, Elsevier, vol. 239(PD).
    6. Chen, Huicui & Liu, Biao & Zhang, Tong & Pei, Pucheng, 2019. "Influencing sensitivities of critical operating parameters on PEMFC output performance and gas distribution quality under different electrical load conditions," Applied Energy, Elsevier, vol. 255(C).
    7. Zhang, Qian & Schulze, Mathias & Gazdzicki, Pawel & Friedrich, K. Andreas, 2021. "Comparison of different performance recovery procedures for polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 302(C).
    8. Xiao, Biao & Zhao, Junjie & Fan, Lixin & Liu, Yang & Chan, Siew Hwa & Tu, Zhengkai, 2022. "Effects of moisture dehumidification on the performance and degradation of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 245(C).
    9. Zhong, Di & Lin, Rui & Jiang, Zhenghua & Zhu, Yike & Liu, Dengchen & Cai, Xin & Chen, Liang, 2020. "Low temperature durability and consistency analysis of proton exchange membrane fuel cell stack based on comprehensive characterizations," Applied Energy, Elsevier, vol. 264(C).
    10. Yu, Zhongshuai & Liu, Fang & Li, Chengzhang, 2023. "Numerical study on effects of hydrogen ejector on PEMFC performances," Energy, Elsevier, vol. 285(C).
    11. Chen, Ben & Zhou, Haoran & He, Shaowen & Meng, Kai & Liu, Yang & Cai, Yonghua, 2021. "Numerical simulation on purge strategy of proton exchange membrane fuel cell with dead-ended anode," Energy, Elsevier, vol. 234(C).
    12. Xia, Zhifeng & Chen, Huicui & Zhang, Ruirui & Weng, Qianyao & Zhang, Tong & Pei, Pucheng, 2023. "Behavior analysis of PEMFC with geometric configuration variation during multiple-step loading reduction process," Applied Energy, Elsevier, vol. 349(C).
    13. Yu, Xianxian & Cai, Shanshan & Luo, Xiaobing & Tu, Zhengkai, 2024. "Barrel effect in an air-cooled proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 286(C).
    14. Yu, Xianxian & Liu, Yang & Tu, Zhengkai & Chan, Siew Hwa, 2023. "Endplate effect in an open-cathode proton exchange membrane fuel cell stack: Phenomenon and resolution," Renewable Energy, Elsevier, vol. 219(P1).
    15. Cabello González, G.M. & Toharias, Baltasar & Iranzo, Alfredo & Suárez, Christian & Rosa, Felipe, 2023. "Voltage distribution analysis and non-uniformity assessment in a 100 cm2 PEM fuel cell stack," Energy, Elsevier, vol. 282(C).
    16. Fan, Ruijia & Chang, Guofeng & Xu, Yiming & Xu, Jiamin, 2024. "Investigating and quantifying the effects of catalyst layer gradients, operating conditions, and their interactions on PEMFC performance through global sensitivity analysis," Energy, Elsevier, vol. 290(C).
    17. Yang, Zirong & Du, Qing & Jia, Zhiwei & Yang, Chunguang & Jiao, Kui, 2019. "Effects of operating conditions on water and heat management by a transient multi-dimensional PEMFC system model," Energy, Elsevier, vol. 183(C), pages 462-476.
    18. Shen, Jun & Du, Changqing & Yan, Fuwu & Chen, Ben & Tu, Zhengkai, 2022. "Experimental study on the dynamic performance of a power system with dual air-cooled PEMFC stacks," Applied Energy, Elsevier, vol. 326(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tu, Xikai & Lv, Jin & Wu, Jin & Luo, Xiaobing & Tu, Zhengkai, 2025. "Experimental investigation of a novel open cathode air-cooled fuel cell stack design featuring simultaneous inlet blowing and outlet suction," Energy, Elsevier, vol. 314(C).
    2. Zhou, Yu & Chen, Ben & Chen, Wenshang & Deng, Qihao & Shen, Jun & Tu, Zhengkai, 2022. "A novel opposite sinusoidal wave flow channel for performance enhancement of proton exchange membrane fuel cell," Energy, Elsevier, vol. 261(PB).
    3. Yu, Xianxian & Cai, Shanshan & Tu, Zhengkai & Chan, Siew Hwa, 2024. "Stack-level analysis of the performance variation in air-cooled PEMFC with Z-type anode manifold," Energy, Elsevier, vol. 305(C).
    4. Fan, Lixin & Tu, Zhengkai & Cai, Shanshan & Miao, Bin & Ding, Ovi Lian & Chen, Yongtao & Chan, Siew Hwa, 2025. "Design principles and analysis of manifold design in a large-scale PEMFC stack," Energy, Elsevier, vol. 319(C).
    5. Chen, Dongfang & Pei, Pucheng & Ren, Peng & Song, Xin & Wang, He & Zhang, Lu & Wang, Mingkai, 2022. "Analytical methods for the effect of anode nitrogen concentration on performance and voltage consistency of proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 258(C).
    6. Chu, Tiankuo & Wang, Qinpu & Xie, Meng & Wang, Baoyun & Yang, Daijun & Li, Bing & Ming, Pingwen & Zhang, Cunman, 2022. "Investigation of the reversible performance degradation mechanism of the PEMFC stack during long-term durability test," Energy, Elsevier, vol. 258(C).
    7. Luo, Zongkai & Zou, Guofu & Chen, Ke & Chen, Wenshang & Deng, Qihao & He, Dandi & Xiong, Zhongzhuang & Chen, Ben, 2025. "Evolution of current distribution and performance degradation mechanism of PEMFC during transient loading under gas starvation condition: An experimental study," Applied Energy, Elsevier, vol. 388(C).
    8. Becker, F. & Cosse, C. & Gentner, C. & Schulz, D. & Liphardt, L., 2024. "Novel electrochemical and thermodynamic conditioning approaches and their evaluation for open cathode PEM-FC stacks," Applied Energy, Elsevier, vol. 363(C).
    9. Lu, Chihua & Li, Chenyu & Liu, Zhien & Li, Yongchao & Zhou, Hui & Zheng, Hao, 2025. "A review on applications of optical visualization technologies for water management in proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    10. Meng, Kai & Chen, Ben & Zhou, Haoran & Shen, Jun & Shen, Zuguo & Tu, Zhengkai, 2022. "Investigation on degradation mechanism of hydrogen–oxygen proton exchange membrane fuel cell under current cyclic loading," Energy, Elsevier, vol. 242(C).
    11. Luo, Zongkai & Chen, Ke & Zou, Guofu & Deng, Qihao & He, Dandi & Xiong, Zhongzhuang & Chen, Wenshang & Chen, Ben, 2024. "Dynamic response characteristics and water-gas-heat synergistic transport mechanism of proton exchange membrane fuel cell during transient loading," Energy, Elsevier, vol. 302(C).
    12. Chen, Xi & Gu, Bin & Feng, Wentao & Tan, Jingying & Kong, Xiangzhong & Li, Shi & Chen, Yiyu & Wan, Zhongmin, 2024. "Research on control strategy of PEMFC air supply system for power and efficiency improvement," Energy, Elsevier, vol. 304(C).
    13. Fan, Lixin & liu, Yang & Luo, Xiaobing & Tu, Zhengkai & Chan, Siew Hwa, 2023. "A novel gas supply configuration for hydrogen utilization improvement in a multi-stack air-cooling PEMFC system with dead-ended anode," Energy, Elsevier, vol. 282(C).
    14. Lu Zhang & Yongfeng Liu & Pucheng Pei & Xintong Liu & Long Wang & Yuan Wan, 2022. "Variation Characteristic Analysis of Water Content at the Flow Channel of Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 15(9), pages 1-20, April.
    15. Pei, Pucheng & Meng, Yining & Chen, Dongfang & Ren, Peng & Wang, Mingkai & Wang, Xizhong, 2023. "Lifetime prediction method of proton exchange membrane fuel cells based on current degradation law," Energy, Elsevier, vol. 265(C).
    16. Ma, Tiancai & Du, Chang & Li, Ruitao & Tang, Xingwang & Su, Jianbin & Qian, Liqin & Shi, Lei, 2025. "Study on the redistribution mechanism and secondary purge strategy of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 378(PA).
    17. Chen, Dongfang & Pei, Pucheng & Meng, Yining & Ren, Peng & Li, Yuehua & Wang, Mingkai & Wang, Xizhong, 2022. "Novel extraction method of working condition spectrum for the lifetime prediction and energy management strategy evaluation of automotive fuel cells," Energy, Elsevier, vol. 255(C).
    18. Zhang, Zhuo & Wang, Qi-yao & Bai, Fan & Chen, Li & Tao, Wen-quan, 2023. "Performance simulation and key parameters in-plane distribution analysis of a commercial-size PEMFC," Energy, Elsevier, vol. 263(PC).
    19. Chen, Huicui & Zhang, Ruirui & Xia, Zhifeng & Weng, Qianyao & Zhang, Tong & Pei, Pucheng, 2023. "Experimental investigation on PEM fuel cell flooding mitigation under heavy loading condition," Applied Energy, Elsevier, vol. 349(C).
    20. Meng, Huanru & Yu, Xianxian & Luo, Xiaobing & Tu, Zhengkai, 2024. "Modelling and operation characteristics of air-cooled PEMFC with metallic bipolar plate used in unmanned aerial vehicle," Energy, Elsevier, vol. 300(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:317:y:2025:i:c:s0360544225003512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.