IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224036326.html
   My bibliography  Save this article

Visualization of ammonia-methanol solution combustion under spark and passive jet ignition mode in an optically-accessible engine

Author

Listed:
  • Zhang, Yixiao
  • Mao, Jianshu
  • Ma, Xiao
  • Wang, Zhi
  • Bera, Tushar K.
  • Shuai, Shijin

Abstract

Ammonia-methanol (A-M) solution is a promising carbon-neutral fuel for internal combustion engines. In this paper, the in-cylinder flame imaging and measurements of A-M solution under spark ignition (SI) and passive jet ignition (JI) mode were conducted, based on an optically-accessible engine. For 7 mol/L A-M solution combustion, the flame shows brown to purple color under stoichiometric condition and orange color under lean conditions. An increased burning rate is obtained under JI mode, with higher flame speed, shorter ignition delay and combustion duration at different excess air ratios (λ = 1∼1.6) than that in SI mode. It also allows a retarded spark timing for higher power output and thermal efficiency. As ammonia energy ratio increases from 13.7 % to 50 %, the flame development becomes slower under SI mode, while JI mode shows limited improvement of combustion. For pre-chamber nozzle designs, an area-to-volume ratio larger than 0.025 cm−1 is conducive to ignition and combustion for 7 mol/L A-M solution. Besides, the effects of slot, unequal and jet-crossing nozzle were also evaluated. Overall, this work provides the basic insights of flame characteristics and demonstrates the combustion accelerating effect of JI method for ammonia-methanol fueled engines.

Suggested Citation

  • Zhang, Yixiao & Mao, Jianshu & Ma, Xiao & Wang, Zhi & Bera, Tushar K. & Shuai, Shijin, 2024. "Visualization of ammonia-methanol solution combustion under spark and passive jet ignition mode in an optically-accessible engine," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224036326
    DOI: 10.1016/j.energy.2024.133854
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224036326
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133854?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Zhelong & Liu, Shang & Qi, Yunliang & Chen, Qingchu & Wang, Zhi, 2024. "Experimental study on the performance of a high compression ratio SI engine using alcohol/ammonia fuel," Energy, Elsevier, vol. 289(C).
    2. Liu, Shang & Lin, Zhelong & Zhang, Hao & Lei, Nuo & Qi, Yunliang & Wang, Zhi, 2023. "Impact of ammonia addition on knock resistance and combustion performance in a gasoline engine with high compression ratio," Energy, Elsevier, vol. 262(PA).
    3. Zhu, Sipeng & Akehurst, Sam & Lewis, Andrew & Yuan, Hao, 2022. "A review of the pre-chamber ignition system applied on future low-carbon spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Zhelong & Liu, Shang & Sun, Qiyang & Qi, Yunliang & Wang, Zhi & Li, Jun, 2024. "Effect of injection and ignition strategy on an ammonia direct injection–Hydrogen jet ignition (ADI-HJI) engine," Energy, Elsevier, vol. 306(C).
    2. Wang, Shuofeng & Sun, Yu & Yang, Jinxin & Wang, Huaiyu, 2024. "Effect of excess air ratio and ignition timing on the combustion and emission characteristics of the ammonia-hydrogen Wankel rotary engine," Energy, Elsevier, vol. 302(C).
    3. Liu, Shang & Lin, Zhelong & Qi, Yunliang & Wang, Zhi & Yang, Dongsheng & Lu, Guoxiang & Wang, Bo, 2024. "Combustion and emission characteristics of a spark ignition engine fueled with ammonia/gasoline and pure ammonia," Applied Energy, Elsevier, vol. 369(C).
    4. Meng, Xianglong & Xie, Fangxi & Liu, Yu & Yu, Zhenbo & Jiang, Yunfeng & Wang, Zhaoyu & Wang, Xiangyang & Jin, Zhaohui, 2025. "Effects of ammonia addition and variable valve timing on knocking and performance of ethanol pre-chamber engine with high compression ratio," Energy, Elsevier, vol. 327(C).
    5. Lin, Zhelong & Liu, Yi & Chen, Qingchu & Sun, Qiyang & Zhu, Wuzhe & Qi, Yunliang & Wang, Zhi, 2025. "Experimental study on the combustion pattern in an ammonia engine using micro diesel ignition," Energy, Elsevier, vol. 320(C).
    6. Elbanna, Ahmed Mohammed & Cheng, Xiaobei, 2024. "The role of charge reactivity in ammonia/diesel dual fuel combustion in compression ignition engine," Energy, Elsevier, vol. 306(C).
    7. Wei, Wenwen & Li, Gesheng & Zhang, Zunhua & Long, Yanxiang & Zhang, Hanyuyang & Huang, Yong & Zhou, Mengni & Wei, Yi, 2023. "Effects of ammonia addition on the performance and emissions for a spark-ignition marine natural gas engine," Energy, Elsevier, vol. 272(C).
    8. Lin, Zhelong & Liu, Shang & Qi, Yunliang & Chen, Qingchu & Wang, Zhi, 2024. "Experimental study on the performance of a high compression ratio SI engine using alcohol/ammonia fuel," Energy, Elsevier, vol. 289(C).
    9. Zhang, Tianyue & Ji, Changwei & Wang, Zhe & Wang, Shuofeng & Yang, Haowen & Wang, Huaiyu & Jiang, Nan, 2024. "Experimental investigation on the combustion characteristics of ultra-lean premixed hydrogen/air using turbulent jet ignition," Energy, Elsevier, vol. 293(C).
    10. Yuan, Hao & Goyal, Harsh & Islam, Reza & Giles, Karl & Howson, Simeon & Lewis, Andrew & Parsons, Dom & Esposito, Stefania & Akehurst, Sam & Jones, Peter & McAllister, Matthew & Littlefair, Bryn & Lu, , 2024. "Thermodynamics-based data-driven combustion modelling for modern spark-ignition engines," Energy, Elsevier, vol. 313(C).
    11. Guo, Xinpeng & Li, Tie & Chen, Run & Huang, Shuai & Zhou, Xinyi & Wang, Ning & Li, Shiyan, 2024. "Effects of the nozzle design parameters on turbulent jet development of active pre-chamber," Energy, Elsevier, vol. 306(C).
    12. Hu, Junnan & Pei, Yiqiang & An, Yanzhao & Zhao, Deyang & Zhang, Zhiyong & Sun, Jian & Gao, Dingwei, 2023. "Study of active pre-chamber jet flames based on the synergy of airflow with different nozzle swirl angle," Energy, Elsevier, vol. 282(C).
    13. Zhang, Hao & Lei, Nuo & Wang, Zhi, 2024. "Ammonia-hydrogen propulsion system for carbon-free heavy-duty vehicles," Applied Energy, Elsevier, vol. 369(C).
    14. Wang, Qingyang & Long, Wuqiang & Hao, Yanan & Wang, Yongjian & Tian, Hua & Dong, Pengbo & Zhang, Zhenxian & Lu, Mingfei, 2025. "Combustion and emission characteristics of an ammonia engine applying hydrogen turbulent jet ignition and ammonia direct-injection," Energy, Elsevier, vol. 322(C).
    15. Cheng, Qiang & Muhammad, Akram & Kaario, Ossi & Ahmad, Zeeshan & Martti, Larmi, 2025. "Ammonia as a sustainable fuel: Review and novel strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    16. Yuji Ikeda, 2022. "The Interaction between In-Cylinder Turbulent Flow and Flame Front Propagation in an Optical SI Engine Measured by High-Speed PIV," Energies, MDPI, vol. 15(8), pages 1-16, April.
    17. Du, Jiakun & Chen, Hong & Li, Yuhuai & Qi, Hongzhong & Wu, Weilong & Xie, Fangxi & Li, Yong, 2025. "Exploring the influence of mixture formation methods on combustion and emissions of hydrogen/ammonia dual-fuel engines at part loads and excess air coefficients," Energy, Elsevier, vol. 315(C).
    18. Lei, Qiming & Wang, Hu & Yan, Xiaodong & Feng, Huihua & Jia, Boru & Wang, Jiayu & Xia, Longbin, 2025. "Investigation into the application of turbulent jet ignition in the operational process of free piston engine generators," Energy, Elsevier, vol. 327(C).
    19. Dong, Pengbo & Chen, Shihao & Long, Wuqiang & Dong, Dongsheng & Wei, Fuxing & Wang, Peng & Lu, Mingfei, 2025. "Elucidating the effect of gasoline jet ignition on ammonia combustion characteristics via visualization methods: A fundamental study," Energy, Elsevier, vol. 318(C).
    20. Shin, Jisoo & Park, Sungwook, 2024. "Numerical analysis and optimization of combustion and emissions in an ammonia-diesel dual-fuel engine using an ammonia direct injection strategy," Energy, Elsevier, vol. 289(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224036326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.