IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v318y2025ics036054422500341x.html
   My bibliography  Save this article

Elucidating the effect of gasoline jet ignition on ammonia combustion characteristics via visualization methods: A fundamental study

Author

Listed:
  • Dong, Pengbo
  • Chen, Shihao
  • Long, Wuqiang
  • Dong, Dongsheng
  • Wei, Fuxing
  • Wang, Peng
  • Lu, Mingfei

Abstract

Ammonia is one kind of the future fuel. Ignition chamber technology is capable of inducing dependable ignition and efficient fuel combustion. Based on the experimental platform of a constant volume combustion chamber with a gasoline ignition chamber, the influences of the combustion pattern, ambient temperature, gasoline energy percentage, and ammonia equivalence ratio on the combustion process of ammonia was investigated by using shadowgraph method. The results revealed that in comparison to ammonia/gasoline mixture combustion pattern, the pattern of ignition chamber with gasoline jet ignition could enhance the peak pressure of main chamber, and significantly shorten the ignition delay and combustion duration, even the gasoline injection quantity was less than 1/20 of the former pattern. Furthermore, as the initial temperature increased, the peak pressure in the main chamber gradually increased, along with an 18.7 % reduction in ignition delay and a 26.7 % decrease in combustion duration. On the other hand, a higher percentage of gasoline energy negatively impacted the jet velocity and ignition capability. Optimal jet ignition performance was achieved at an energy percentage of 1.0 % of gasoline, with a peak pressure of 4.96 MPa and a combustion duration of 70.4 ms, which was 15.4 % shorter than that of the 2.0 % condition. Besides, the effective ammonia combustion performance could be achieved at 1.0 ammonia equivalence ratio compared to that of 0.6 and 0.8 conditions. These results are expected to provide valuable insights for the advancement of ammonia-fueled engines.

Suggested Citation

  • Dong, Pengbo & Chen, Shihao & Long, Wuqiang & Dong, Dongsheng & Wei, Fuxing & Wang, Peng & Lu, Mingfei, 2025. "Elucidating the effect of gasoline jet ignition on ammonia combustion characteristics via visualization methods: A fundamental study," Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:energy:v:318:y:2025:i:c:s036054422500341x
    DOI: 10.1016/j.energy.2025.134699
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422500341X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134699?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Deyang & An, Yanzhao & Pei, Yiqiang & Shi, Hao & Wang, Kun, 2023. "Numerical study on the asymmetrical jets formation from active pre-chamber under super-lean combustion conditions," Energy, Elsevier, vol. 262(PA).
    2. Liu, Shang & Lin, Zhelong & Zhang, Hao & Lei, Nuo & Qi, Yunliang & Wang, Zhi, 2023. "Impact of ammonia addition on knock resistance and combustion performance in a gasoline engine with high compression ratio," Energy, Elsevier, vol. 262(PA).
    3. Ryu, Kyunghyun & Zacharakis-Jutz, George E. & Kong, Song-Charng, 2014. "Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine," Applied Energy, Elsevier, vol. 116(C), pages 206-215.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Kang & Zhao, Kai & He, Zhixia & Guo, Genmiao & Jin, Yu & Shen, Yuhang & Gao, Zhang & Qi, Haotian, 2025. "Visualization study on the ignition and combustion characteristics of highly reactive fuel under methane atmosphere," Energy, Elsevier, vol. 318(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elbanna, Ahmed Mohammed & Cheng, Xiaobei, 2024. "The role of charge reactivity in ammonia/diesel dual fuel combustion in compression ignition engine," Energy, Elsevier, vol. 306(C).
    2. Liu, Shang & Lin, Zhelong & Qi, Yunliang & Wang, Zhi & Yang, Dongsheng & Lu, Guoxiang & Wang, Bo, 2024. "Combustion and emission characteristics of a spark ignition engine fueled with ammonia/gasoline and pure ammonia," Applied Energy, Elsevier, vol. 369(C).
    3. Zhang, Hao & Lei, Nuo & Wang, Zhi, 2024. "Ammonia-hydrogen propulsion system for carbon-free heavy-duty vehicles," Applied Energy, Elsevier, vol. 369(C).
    4. Shin, Jisoo & Park, Sungwook, 2024. "Numerical analysis and optimization of combustion and emissions in an ammonia-diesel dual-fuel engine using an ammonia direct injection strategy," Energy, Elsevier, vol. 289(C).
    5. Nie, Zexin & Huang, Yi & Lu, Ziwang & Tian, Guangyu & Liu, Xinhua, 2024. "Energy efficiency analysis of ammonia-fueled power systems for vehicles considering residual heat recovery," Energy, Elsevier, vol. 312(C).
    6. Li, Jun & Huang, Hongyu & Kobayashi, Noriyuki & He, Zhaohong & Osaka, Yugo & Zeng, Tao, 2015. "Numerical study on effect of oxygen content in combustion air on ammonia combustion," Energy, Elsevier, vol. 93(P2), pages 2053-2068.
    7. Wei, Wenwen & Li, Gesheng & Zhang, Zunhua & Long, Yanxiang & Zhang, Hanyuyang & Huang, Yong & Zhou, Mengni & Wei, Yi, 2023. "Effects of ammonia addition on the performance and emissions for a spark-ignition marine natural gas engine," Energy, Elsevier, vol. 272(C).
    8. Lin, Zhelong & Liu, Shang & Qi, Yunliang & Chen, Qingchu & Wang, Zhi, 2024. "Experimental study on the performance of a high compression ratio SI engine using alcohol/ammonia fuel," Energy, Elsevier, vol. 289(C).
    9. Liu, Shang & Lin, Zhelong & Zhang, Hao & Lei, Nuo & Qi, Yunliang & Wang, Zhi, 2023. "Impact of ammonia addition on knock resistance and combustion performance in a gasoline engine with high compression ratio," Energy, Elsevier, vol. 262(PA).
    10. Yapicioglu, Arda & Dincer, Ibrahim, 2019. "A review on clean ammonia as a potential fuel for power generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 96-108.
    11. Muhammad Aziz & Agung Tri Wijayanta & Asep Bayu Dani Nandiyanto, 2020. "Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization," Energies, MDPI, vol. 13(12), pages 1-25, June.
    12. Lianmei Guo & Jianjun Zhu & Laibin Fu & Zhixin Li & Fanfan Liu & Zilin Wang & Xiangyang Liu & Qinqiang Dong, 2023. "Effects of Pre-Injection Strategy on Combustion Characteristics of Ammonia/Diesel Dual-Fuel Compression Ignition Mode," Energies, MDPI, vol. 16(23), pages 1-16, November.
    13. Zhao, Deyang & An, Yanzhao & Pei, Yiqiang & Hu, Junnan & Wang, Changhui & Sun, Yuxing & Xu, Linxun & Zhang, Zhiyong & Sun, Jian, 2024. "Numerical study on the inner spray and combustion of active pre-chamber jet ignition for achieving higher performance of a hybrid engine under ultra-lean conditions," Energy, Elsevier, vol. 309(C).
    14. Wang, Shuofeng & Sun, Yu & Yang, Jinxin & Wang, Huaiyu, 2024. "Effect of excess air ratio and ignition timing on the combustion and emission characteristics of the ammonia-hydrogen Wankel rotary engine," Energy, Elsevier, vol. 302(C).
    15. Christine Mounaïm-Rousselle & Pierre Bréquigny & Clément Dumand & Sébastien Houillé, 2021. "Operating Limits for Ammonia Fuel Spark-Ignition Engine," Energies, MDPI, vol. 14(14), pages 1-13, July.
    16. Tay, Kun Lin & Yang, Wenming & Li, Jing & Zhou, Dezhi & Yu, Wenbin & Zhao, Feiyang & Chou, Siaw Kiang & Mohan, Balaji, 2017. "Numerical investigation on the combustion and emissions of a kerosene-diesel fueled compression ignition engine assisted by ammonia fumigation," Applied Energy, Elsevier, vol. 204(C), pages 1476-1488.
    17. Hu, Junnan & Pei, Yiqiang & An, Yanzhao & Zhao, Deyang & Zhang, Zhiyong & Sun, Jian & Gao, Dingwei, 2023. "Study of active pre-chamber jet flames based on the synergy of airflow with different nozzle swirl angle," Energy, Elsevier, vol. 282(C).
    18. Cheng, Qiang & Muhammad, Akram & Kaario, Ossi & Ahmad, Zeeshan & Martti, Larmi, 2025. "Ammonia as a sustainable fuel: Review and novel strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    19. Ahmed T. Khalil & Dimitris M. Manias & Efstathios-Al. Tingas & Dimitrios C. Kyritsis & Dimitris A. Goussis, 2019. "Algorithmic Analysis of Chemical Dynamics of the Autoignition of NH 3 –H 2 O 2 /Air Mixtures," Energies, MDPI, vol. 12(23), pages 1-14, November.
    20. Du, Jiakun & Chen, Hong & Li, Yuhuai & Qi, Hongzhong & Wu, Weilong & Xie, Fangxi & Li, Yong, 2025. "Exploring the influence of mixture formation methods on combustion and emissions of hydrogen/ammonia dual-fuel engines at part loads and excess air coefficients," Energy, Elsevier, vol. 315(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:318:y:2025:i:c:s036054422500341x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.