IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224038520.html
   My bibliography  Save this article

Thermodynamics-based data-driven combustion modelling for modern spark-ignition engines

Author

Listed:
  • Yuan, Hao
  • Goyal, Harsh
  • Islam, Reza
  • Giles, Karl
  • Howson, Simeon
  • Lewis, Andrew
  • Parsons, Dom
  • Esposito, Stefania
  • Akehurst, Sam
  • Jones, Peter
  • McAllister, Matthew
  • Littlefair, Bryn
  • Lu, Zhewen
  • Zhu, Sipeng

Abstract

Combustion modelling is complicated, computationally expensive, and crucial for the development of modern spark-ignition (SI) engines. This study introduces a novel data-driven approach to improve the predictability of phenomenological SI engine models. First, a physics-based model is used to generate Mass Fraction Burned (MFB) profiles for 1258 precisely controlled knock-limited combustion experiments. To predict these MFB profiles based on the operating conditions, Artificial Neural Networks (ANN), Multiple Output Support Vector Regression (MOSVR), and Multivariate Gaussian Process (MGP) are then applied. Among these, MGP demonstrates superior performance due to the Gaussian-like distribution of the outputs. Further sensitivity analysis using MGP identifies critical inputs that are not engine specific to develop a thermodynamics-based data-driven model. The model demonstrates high accuracy, uses normalised inputs that are independent of engine geometry, and consistently performs well with small datasets. When applied to a different but similarly sized engine, the model accurately predicts the knock-limited spark timing and captures the MFB profile relatively well, showing strong generalisability. This study not only improves the predictability of engine combustion simulations but also establishes a valuable dataset for further development of data-driven models in different engines.

Suggested Citation

  • Yuan, Hao & Goyal, Harsh & Islam, Reza & Giles, Karl & Howson, Simeon & Lewis, Andrew & Parsons, Dom & Esposito, Stefania & Akehurst, Sam & Jones, Peter & McAllister, Matthew & Littlefair, Bryn & Lu, , 2024. "Thermodynamics-based data-driven combustion modelling for modern spark-ignition engines," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224038520
    DOI: 10.1016/j.energy.2024.134074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224038520
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yaopeng & Jia, Ming & Han, Xu & Bai, Xue-Song, 2021. "Towards a comprehensive optimization of engine efficiency and emissions by coupling artificial neural network (ANN) with genetic algorithm (GA)," Energy, Elsevier, vol. 225(C).
    2. Wang, Huaiyu & Ji, Changwei & Shi, Cheng & Yang, Jinxin & Wang, Shuofeng & Ge, Yunshan & Chang, Ke & Meng, Hao & Wang, Xin, 2023. "Multi-objective optimization of a hydrogen-fueled Wankel rotary engine based on machine learning and genetic algorithm," Energy, Elsevier, vol. 263(PD).
    3. Zandie, Mohammad & Ng, Hoon Kiat & Gan, Suyin & Muhamad Said, Mohd Farid & Cheng, Xinwei, 2023. "Multi-input multi-output machine learning predictive model for engine performance and stability, emissions, combustion and ignition characteristics of diesel-biodiesel-gasoline blends," Energy, Elsevier, vol. 262(PA).
    4. Cao, Jiale & Li, Tie & Huang, Shuai & Chen, Run & Li, Shiyan & Kuang, Min & Yang, Rundai & Huang, Yating, 2023. "Co-optimization of miller degree and geometric compression ratio of a large-bore natural gas generator engine with novel Knock models and machine learning," Applied Energy, Elsevier, vol. 352(C).
    5. Wang, Huaiyu & Ji, Changwei & Shi, Cheng & Ge, Yunshan & Meng, Hao & Yang, Jinxin & Chang, Ke & Wang, Shuofeng, 2022. "Comparison and evaluation of advanced machine learning methods for performance and emissions prediction of a gasoline Wankel rotary engine," Energy, Elsevier, vol. 248(C).
    6. Zhu, Sipeng & Akehurst, Sam & Lewis, Andrew & Yuan, Hao, 2022. "A review of the pre-chamber ignition system applied on future low-carbon spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    7. Hai, Tao & Hussein Kadir, Dler & Ghanbari, Afshin, 2023. "Modeling the emission characteristics of the hydrogen-enriched natural gas engines by multi-output least-squares support vector regression: Comprehensive statistical and operating analyses," Energy, Elsevier, vol. 276(C).
    8. Zhang, Liwu & Zhu, Guanghui & Chao, Yanpu & Chen, Liangbin & Ghanbari, Afshin, 2023. "Simultaneous prediction of CO2, CO, and NOx emissions of biodiesel-hydrogen blend combustion in compression ignition engines by supervised machine learning tools," Energy, Elsevier, vol. 282(C).
    9. Stefania Esposito & Max Mally & Liming Cai & Heinz Pitsch & Stefan Pischinger, 2020. "Validation of a RANS 3D-CFD Gaseous Emission Model with Space-, Species-, and Cycle-Resolved Measurements from an SI DI Engine," Energies, MDPI, vol. 13(17), pages 1-19, August.
    10. Gharehghani, Ayat & Abbasi, Hamid Reza & Alizadeh, Pouria, 2021. "Application of machine learning tools for constrained multi-objective optimization of an HCCI engine," Energy, Elsevier, vol. 233(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Ting & Wang, Huaiyu & Yang, Wenming & Peng, Xueyuan, 2024. "Mathematical modeling and optimization of gas foil bearings-rotor system in hydrogen fuel cell vehicles," Energy, Elsevier, vol. 290(C).
    2. Cesar de Lima Nogueira, Silvio & Och, Stephan Hennings & Moura, Luis Mauro & Domingues, Eric & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2023. "Prediction of the NOx and CO2 emissions from an experimental dual fuel engine using optimized random forest combined with feature engineering," Energy, Elsevier, vol. 280(C).
    3. Wang, Huaiyu & Ji, Changwei & Shi, Cheng & Yang, Jinxin & Wang, Shuofeng & Ge, Yunshan & Chang, Ke & Meng, Hao & Wang, Xin, 2023. "Multi-objective optimization of a hydrogen-fueled Wankel rotary engine based on machine learning and genetic algorithm," Energy, Elsevier, vol. 263(PD).
    4. Zhu, Yizi & He, Zhixia & Xuan, Tiemin & Shao, Zhuang, 2024. "An enhanced automated machine learning model for optimizing cycle-to-cycle variation in hydrogen-enriched methanol engines," Applied Energy, Elsevier, vol. 362(C).
    5. Wang, Chongyao & Wang, Xin & Wang, Huaiyu & Xu, Yonghong & Ge, Yunshan & Tan, Jianwei & Hao, Lijun & Wang, Yachao & Zhang, Mengzhu & Li, Ruonan, 2024. "Co-optimizing NOx emission and power output of a natural gas engine-ORC combined system through neural networks and genetic algorithms," Energy, Elsevier, vol. 289(C).
    6. Qingwen, Wang & XiaoHui, Chu & Chao, Yu, 2024. "Modeling of heat gain through green roofs utilizing artificial intelligence techniques," Energy, Elsevier, vol. 303(C).
    7. Chen, Guisheng & Sun, Min & Li, Junda & Wang, Jiguang & Shen, Yinggang & Liang, Daping & Xiao, Renxin, 2024. "Study on high-altitude ceiling strategy of compression ignition aviation piston engines based on BP-NSGA II algorithm optimization," Energy, Elsevier, vol. 294(C).
    8. Farhan, Muhammad & Chen, Tianhao & Rao, Anas & Shahid, Muhammad Ihsan & Xiao, Qiuhong & Liu, Yongzheng & Ma, Fanhua, 2024. "Performance, emissions and combustion analysis of hydrogen-enriched compressed natural gas spark ignition engine by optimized Gaussian process regression and neural network at low speed on different l," Energy, Elsevier, vol. 302(C).
    9. Yang, Jinxin & Wang, Huaiyu & Ji, Changwei & Chang, Ke & Wang, Shuofeng, 2023. "Investigation of intake closing timing on the flow field and combustion process in a small-scaled Wankel rotary engine under various engine speeds designed for the UAV application," Energy, Elsevier, vol. 273(C).
    10. Wang, Huaiyu & Ji, Changwei & Yang, Jinxin & Wang, Shuofeng & Ge, Yunshan, 2022. "Towards a comprehensive optimization of the intake characteristics for side ported Wankel rotary engines by coupling machine learning with genetic algorithm," Energy, Elsevier, vol. 261(PB).
    11. Tian, Erlin & Lv, Guoning & Li, Zuhe, 2024. "Evaluation of emission of the hydrogen-enriched diesel engine through machine learning," Energy, Elsevier, vol. 307(C).
    12. Liang, Zhendong & Xie, Fangxi & Li, Qian & Su, Yan & Wang, Zhongshu & Dou, Huili & Li, Xiaoping, 2024. "Co-optimization and prediction of high-efficiency combustion and zero-carbon emission at part load in the hydrogen direct injection engine based on VVT, split injection and ANN," Energy, Elsevier, vol. 308(C).
    13. Farhan, Muhammad & Chen, Tianhao & Rao, Anas & Shahid, Muhammad Ihsan & Xiao, Qiuhong & Salam, Hamza Ahmad & Ma, Fanhua, 2024. "An experimental study of knock analysis of HCNG fueled SI engine by different methods and prediction of knock intensity by particle swarm optimization-support vector machine," Energy, Elsevier, vol. 309(C).
    14. Li, Ji & Zhou, Quan & He, Xu & Chen, Wan & Xu, Hongming, 2023. "Data-driven enabling technologies in soft sensors of modern internal combustion engines: Perspectives," Energy, Elsevier, vol. 272(C).
    15. Zhang, Yulin & Su, Yan & Li, Xiaoping & Xie, Fangxi & Yu, Hao & Shen, Bo & Lang, Maochun, 2025. "Study and prediction on macroscopic characteristics of free spray of typical alcohol fuels through experimentation and the artificial neural network," Energy, Elsevier, vol. 316(C).
    16. Yao, Dasuo & Qin, Jing & Pei, Yiqiang & Wang, Yingbo & Wang, Tongjin, 2024. "Comprehensive influence of rotary speed and intake closing timing on the combustion process of the elliptical rotary engine," Energy, Elsevier, vol. 313(C).
    17. Ma, Lianghua & Liu, Xiaoliang & Liu, Haoyang & Alizadeh, As'ad & Shamsborhan, Mahmoud, 2023. "The influence of the struts on mass diffusion system of lateral hydrogen micro jet in combustor of scramjet engine: Numerical study," Energy, Elsevier, vol. 279(C).
    18. Kale, Aneesh Vijay & Krishnasamy, Anand, 2023. "Experimental study of homogeneous charge compression ignition combustion in a light-duty diesel engine fueled with isopropanol–gasoline blends," Energy, Elsevier, vol. 264(C).
    19. Sungur, Bilal & Basar, Cem & Kaleli, Alirıza, 2023. "Multi-objective optimisation of the emission parameters and efficiency of pellet stove at different supply airflow positions based on machine learning approach," Energy, Elsevier, vol. 278(PA).
    20. Bao, Jianhui & Lei, Jian & Tian, Guohong & Wang, Xiaomeng & Wang, Huaiyu & Shi, Cheng, 2024. "A review of the application development and key technologies of rotary engines under the background of carbon neutrality," Energy, Elsevier, vol. 311(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224038520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.