IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224035801.html
   My bibliography  Save this article

Deciphering the CO2 hydrates formation dynamics in brine-saturated oceanic sediments using experimental and machine learning modelling approach

Author

Listed:
  • Dhamu, Vikas
  • Xiao, Mengqi
  • Qureshi, M Fahed
  • Linga, Praveen

Abstract

One of the potential strategies for limiting global warming is capturing excess amounts of industry CO2 emissions and sequestrating it inside the oceanic sediments as CO2 hydrates. The seabed consists of sediments with different porosity and sizes, which can significantly impede the kinetics of CO2 hydrates. To address these challenges, in this novel work the CO2 hydrate kinetics and morphologies have been investigated in brine-rich [3.5 wt% NaCl] coarse sediments [porosity = 0.28, Ø = 0.5–1.5 mm], granule sediments [porosity = 0.43, Ø = 1.5–3 mm] and dual sediments [coarse + granules] inside a high-pressure reactor [3.5 MPa, 1–2 °C] with artificial seabed. According to the key experimental results, the water-to-hydrate conversion [%] was estimated to be 67.24 (±3.02) % for coarse sediments, 49.58 (±4.97) % for dual sediments (coarse + granules), and 27.68 (±5.21) % for granules. In-situ Raman spectroscopy was used to evaluate the real-time solubility of CO2 [0.023 mol/mol], and image processing thresholding was used to identify CO2 hydrate distribution patterns. A mathematical model was proposed as a major contribution to predict CO2 hydrates kinetics in sediments, using 94,203 data points. The model was trained via a supervised machine-learning [ML] algorithm and can predict CO2 hydrate kinetics with an AARD of 7.54–8.47 %.

Suggested Citation

  • Dhamu, Vikas & Xiao, Mengqi & Qureshi, M Fahed & Linga, Praveen, 2024. "Deciphering the CO2 hydrates formation dynamics in brine-saturated oceanic sediments using experimental and machine learning modelling approach," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035801
    DOI: 10.1016/j.energy.2024.133802
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224035801
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133802?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qureshi, M Fahed & Khandelwal, Himanshu & Usadi, Adam & Barckholtz, Timothy A. & Mhadeshwar, Ashish B. & Linga, Praveen, 2022. "CO2 hydrate stability in oceanic sediments under brine conditions," Energy, Elsevier, vol. 256(C).
    2. Sun, Qibei & Kang, Yong Tae, 2016. "Review on CO2 hydrate formation/dissociation and its cold energy application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 478-494.
    3. Aminnaji, Morteza & Qureshi, M Fahed & Dashti, Hossein & Hase, Alfred & Mosalanejad, Abdolali & Jahanbakhsh, Amir & Babaei, Masoud & Amiri, Amirpiran & Maroto-Valer, Mercedes, 2024. "CO2 Gas hydrate for carbon capture and storage applications – Part 1," Energy, Elsevier, vol. 300(C).
    4. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    5. Kirsten Zickfeld & Alexander J. MacIsaac & Josep G. Canadell & Sabine Fuss & Robert B. Jackson & Chris D. Jones & Annalea Lohila & H. Damon Matthews & Glen P. Peters & Joeri Rogelj & Sönke Zaehle, 2023. "Net-zero approaches must consider Earth system impacts to achieve climate goals," Nature Climate Change, Nature, vol. 13(12), pages 1298-1305, December.
    6. Sun, Shicai & Gu, Linlin & Yang, Zhendong & Lin, Haifei & Li, Yanmin, 2023. "Hydrate formation from CO2 saturated water under displacement condition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    7. M Fahed Qureshi & Majeda Khraisheh & Fares Almomani, 2020. "Doping amino acids with classical gas hydrate inhibitors to facilitate the hydrate inhibition effect at low dosages," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 783-794, August.
    8. Sun, Ningru & Zhang, Ye & Bhattacharjee, Gaurav & Li, Yanjun & Qiu, Nianxiang & Du, Shiyu & Linga, Praveen, 2024. "Seawater-based sII hydrate formation promoted by 1,3-Dioxolane for energy storage," Energy, Elsevier, vol. 286(C).
    9. Li, Gang & Li, Xiao-Sen & Lv, Qiu-Nan & Xiao, Chang-Wen & Liu, Jian-Wu, 2023. "Full implicit simulator of hydrate (FISH) and analysis on hydrate dissociation in porous media in the cubic hydrate simulator," Energy, Elsevier, vol. 280(C).
    10. Ren, Junjie & Zeng, Siyu & Chen, Daoyi & Yang, Mingjun & Linga, Praveen & Yin, Zhenyuan, 2023. "Roles of montmorillonite clay on the kinetics and morphology of CO2 hydrate in hydrate-based CO2 sequestration1," Applied Energy, Elsevier, vol. 340(C).
    11. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    12. Yang, She Hern Bryan & Babu, Ponnivalavan & Chua, Sam Fu Sheng & Linga, Praveen, 2016. "Carbon dioxide hydrate kinetics in porous media with and without salts," Applied Energy, Elsevier, vol. 162(C), pages 1131-1140.
    13. Weixin Pang & Yang Ge & Mingqiang Chen & Xiaohan Zhang & Huiyun Wen & Qiang Fu & Xin Lei & Qingping Li & Shouwei Zhou, 2024. "Large-Scale Experimental Investigation of Hydrate-Based Carbon Dioxide Sequestration," Energies, MDPI, vol. 17(13), pages 1-17, June.
    14. Aminnaji, Morteza & Qureshi, M Fahed & Dashti, Hossein & Hase, Alfred & Mosalanejad, Abdolali & Jahanbakhsh, Amir & Babaei, Masoud & Amiri, Amirpiran & Maroto-Valer, Mercedes, 2024. "CO2 gas hydrate for carbon capture and storage applications – Part 2," Energy, Elsevier, vol. 300(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dhamu, Vikas & Mengqi, Xiao & Qureshi, M Fahed & Yin, Zhenyuan & Jana, Amiya K. & Linga, Praveen, 2024. "Evaluating CO2 hydrate kinetics in multi-layered sediments using experimental and machine learning approach: Applicable to CO2 sequestration," Energy, Elsevier, vol. 290(C).
    2. Liu, Fa-Ping & Li, Ai-Rong & Qing, Sheng-Lan & Luo, Ze-Dong & Ma, Yu-Ling, 2022. "Formation kinetics, mechanism of CO2 hydrate and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Niu, Mengya & Yao, Yuanxin & Zi, Mucong & Dong, Peng & Chen, Daoyi, 2024. "Clay mineral mediated dynamics of CO2 hydrate formation and dissociation: Experimental insights for carbon sequestration," Energy, Elsevier, vol. 311(C).
    4. Ge, Yang & Wang, Lei & Song, Yongchen, 2024. "Large-scale experimental study on marine hydrate-based CO2 sequestration," Energy, Elsevier, vol. 312(C).
    5. Wang, Tian & Fan, Ziyu & Sun, Lingjie & Yang, Lei & Zhao, Jiafei & Song, Yongchen & Zhang, Lunxiang, 2024. "Pore-scale behaviors of CO2 hydrate formation and dissociation in the presence of swelling clay: Implication for geologic carbon sequestration," Energy, Elsevier, vol. 308(C).
    6. Lim, Junkyu & Mok, Junghoon & Seo, Yongwon, 2024. "Investigating the significance of structural transition in chlorodifluoromethane (R22) + N2 hydrates for hydrate-based greenhouse gas separation," Energy, Elsevier, vol. 306(C).
    7. Qureshi, M Fahed & Khandelwal, Himanshu & Usadi, Adam & Barckholtz, Timothy A. & Mhadeshwar, Ashish B. & Linga, Praveen, 2022. "CO2 hydrate stability in oceanic sediments under brine conditions," Energy, Elsevier, vol. 256(C).
    8. Shanling Zhang & Sheng Jiang & Hongda Li & Peiran Li & Xiuping Zhong & Chen Chen & Guigang Tu & Xiang Liu & Zhenhua Xu, 2025. "Current Status and Reflections on Ocean CO 2 Sequestration: A Review," Energies, MDPI, vol. 18(4), pages 1-28, February.
    9. Peng, Hao & Li, Xiaosen & Chen, Zhaoyang & Zhang, Yu & Ji, Hongfei & Weng, Yifan, 2024. "Effect of gravel pack permeability on horizontal well productivity loss under secondary methane hydrate formation: Experimental optimization of 3D randomly distributed mixed sand pack," Applied Energy, Elsevier, vol. 371(C).
    10. He, Tianbiao & Xing, Xialian & Xu, Hao & Mao, Ning & Qi, Meng & Zhang, Jibao & Yin, Zhenyuan, 2024. "Towards energy-efficient hydrate-based desalination: A comprehensive study on binary hydrate formers with propane as a promoter," Applied Energy, Elsevier, vol. 375(C).
    11. Sergey Misyura & Pavel Strizhak & Anton Meleshkin & Vladimir Morozov & Olga Gaidukova & Nikita Shlegel & Maria Shkola, 2023. "A Review of Gas Capture and Liquid Separation Technologies by CO 2 Gas Hydrate," Energies, MDPI, vol. 16(8), pages 1-20, April.
    12. Chen, Xuejun & Lu, Hailong & Gu, Lijuan & Shang, Shilong & Zhang, Yi & Huang, Xin & Zhang, Le, 2022. "Preliminary evaluation of the economic potential of the technologies for gas hydrate exploitation," Energy, Elsevier, vol. 243(C).
    13. Yi Wang & Jing-Chun Feng & Xiao-Sen Li & Yu Zhang & Gang Li, 2016. "Evaluation of Gas Production from Marine Hydrate Deposits at the GMGS2-Site 8, Pearl River Mouth Basin, South China Sea," Energies, MDPI, vol. 9(3), pages 1-22, March.
    14. Deng, Zhixia & Fan, Shuanshi & Wang, Yanhong & Lang, Xuemei & Li, Gang & Liu, Faping & Li, Mengyang, 2023. "High storage capacity and high formation rate of carbon dioxide hydrates via super-hydrophobic fluorinated graphenes," Energy, Elsevier, vol. 264(C).
    15. Sai Bhargav Annavajjala & Noah Van Dam & Devinder Mahajan & Jan Kosny, 2025. "A Review of CO 2 Clathrate Hydrate Technology: From Lab-Scale Preparation to Cold Thermal Energy Storage Solutions," Energies, MDPI, vol. 18(10), pages 1-52, May.
    16. Chong, Zheng Rong & Koh, Jun Wee & Linga, Praveen, 2017. "Effect of KCl and MgCl2 on the kinetics of methane hydrate formation and dissociation in sandy sediments," Energy, Elsevier, vol. 137(C), pages 518-529.
    17. Aminnaji, Morteza & Qureshi, M Fahed & Dashti, Hossein & Hase, Alfred & Mosalanejad, Abdolali & Jahanbakhsh, Amir & Babaei, Masoud & Amiri, Amirpiran & Maroto-Valer, Mercedes, 2024. "CO2 gas hydrate for carbon capture and storage applications – Part 2," Energy, Elsevier, vol. 300(C).
    18. Arian Semedo & João Garcia & Moisés Brito, 2025. "Cryogenics in Renewable Energy Storage: A Review of Technologies," Energies, MDPI, vol. 18(6), pages 1-23, March.
    19. Xie, Yan & Zheng, Tao & Zhu, Yujie & Sun, Changyu & Chen, Guangjin & Feng, Jingchun, 2024. "H2 promotes the premature replacement of CH4–CO2 hydrate even when the CH4 gas-phase pressure exceeds the phase equilibrium pressure of CH4 hydrate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    20. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.