IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v327y2025ics0360544225020365.html
   My bibliography  Save this article

Formation kinetics and MRI visualization of CO2 hydrate with different flow conditions in porous media: Evolution prediction model of stored CO2 leakage

Author

Listed:
  • Gong, Guangjun
  • Zhang, Jingru
  • Zheng, Jia-nan
  • Zhao, Guojun
  • Pang, Weixin
  • Song, Yongchen
  • Yang, Mingjun

Abstract

Concern on carbon dioxide (CO2) leakage of geological storage is the most important for global governments and the public. For the subsea scene with the greatest storage potential, possible leakage of stored CO2 can be effectively stopped through the CO2 hydrate formation. It is hence necessary to investigate the formation characteristics of CO2 hydrate, especially under different flow conditions. This study employed a magnetic resonance imaging (MRI) apparatus to observe hydrate formation at 276.15 K and 3.0 MPa. It was found that low flow rates and high water saturation (with a maximum increase in hydrate saturation of nearly 132 %) promoted the formation of CO2 hydrates. This revealed the spatial dispersion of hydrate formation in porous media that was just the most deficiency of traditional kinetic models, and hence this study took nucleation point (Nnuc) and formation amount (Nfor) into consideration for establishing a new formation kinetic model as dN/dt = r(N + Nnuc)(Nfor−N)/(Nnuc + Nfor). Correlation coefficients (standard error) with measurements from previous studies were all greater (less) than 0.96 (0.00041). In addition, r(Nnuc + Nfor) is further employed to evaluate the hydrate formation rate under different flow conditions and then quantitatively predict the minimum requirements of pore water and flow rate for CO2 hydrate formation.

Suggested Citation

  • Gong, Guangjun & Zhang, Jingru & Zheng, Jia-nan & Zhao, Guojun & Pang, Weixin & Song, Yongchen & Yang, Mingjun, 2025. "Formation kinetics and MRI visualization of CO2 hydrate with different flow conditions in porous media: Evolution prediction model of stored CO2 leakage," Energy, Elsevier, vol. 327(C).
  • Handle: RePEc:eee:energy:v:327:y:2025:i:c:s0360544225020365
    DOI: 10.1016/j.energy.2025.136394
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225020365
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136394?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Song, Yongchen & Yang, Lei & Zhao, Jiafei & Liu, Weiguo & Yang, Mingjun & Li, Yanghui & Liu, Yu & Li, Qingping, 2014. "The status of natural gas hydrate research in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 778-791.
    2. Zhao, Guojun & Zheng, Jia-nan & Gong, Guangjun & Chen, Bingbing & Yang, Mingjun & Song, Yongchen, 2023. "Formation characteristics and leakage termination effects of CO2 hydrate cap in case of geological sequestration leakage," Applied Energy, Elsevier, vol. 351(C).
    3. Qureshi, M Fahed & Khandelwal, Himanshu & Usadi, Adam & Barckholtz, Timothy A. & Mhadeshwar, Ashish B. & Linga, Praveen, 2022. "CO2 hydrate stability in oceanic sediments under brine conditions," Energy, Elsevier, vol. 256(C).
    4. Aminnaji, Morteza & Qureshi, M Fahed & Dashti, Hossein & Hase, Alfred & Mosalanejad, Abdolali & Jahanbakhsh, Amir & Babaei, Masoud & Amiri, Amirpiran & Maroto-Valer, Mercedes, 2024. "CO2 Gas hydrate for carbon capture and storage applications – Part 1," Energy, Elsevier, vol. 300(C).
    5. Liu, Qingbin & Li, Shaohua & Jiang, Lanlan & Yang, Mingjun & Yu, Tao & Song, Yongchen, 2025. "Behaviors of methane hydrate formation and growth with halo," Applied Energy, Elsevier, vol. 381(C).
    6. M. A. Martínez-Botí & G. Marino & G. L. Foster & P. Ziveri & M. J. Henehan & J. W. B. Rae & P. G. Mortyn & D. Vance, 2015. "Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation," Nature, Nature, vol. 518(7538), pages 219-222, February.
    7. Wang, Pengfei & Wang, Shenglong & Song, Yongchen & Yang, Mingjun, 2018. "Dynamic measurements of methane hydrate formation/dissociation in different gas flow direction," Applied Energy, Elsevier, vol. 227(C), pages 703-709.
    8. Sun, Shicai & Gu, Linlin & Yang, Zhendong & Lin, Haifei & Li, Yanmin, 2023. "Hydrate formation from CO2 saturated water under displacement condition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    9. Ren, Liang-Liang & Jiang, Min & Wang, Ling-Ban & Zhu, Yi-Jian & Li, Zhi & Sun, Chang-Yu & Chen, Guang-Jin, 2020. "Gas hydrate exploitation and carbon dioxide sequestration under maintaining the stiffness of hydrate-bearing sediments," Energy, Elsevier, vol. 194(C).
    10. Gong, Guangjun & Yang, Mingjun & Pang, Weixin & Zheng, Jia-nan & Song, Yongchen, 2024. "Dynamic optimization of real-time depressurization pathways in hydrate-bearing South Sea clay reservoirs," Energy, Elsevier, vol. 292(C).
    11. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    12. Guo, Yang & Li, Shuxia & Sun, Hao & Wu, Didi & Liu, Lu & Zhang, Ningtao & Qin, Xuwen & Lu, Cheng, 2024. "Enhancing gas production and CO2 sequestration from marine hydrate reservoirs through optimized CO2 hydrate cap," Energy, Elsevier, vol. 303(C).
    13. Dhamu, Vikas & Mengqi, Xiao & Qureshi, M Fahed & Yin, Zhenyuan & Jana, Amiya K. & Linga, Praveen, 2024. "Evaluating CO2 hydrate kinetics in multi-layered sediments using experimental and machine learning approach: Applicable to CO2 sequestration," Energy, Elsevier, vol. 290(C).
    14. Xu, Huazheng & Liu, Yingying & He, Siyuan & Zheng, Jia-nan & Jiang, Lanlan & Song, Yongchen, 2024. "Enhanced CO2 hydrate formation using hydrogen-rich stones, L-Methionine and SDS: Insights from kinetic and morphological studies," Energy, Elsevier, vol. 291(C).
    15. Kou, Xuan & Feng, Jing-Chun & Li, Xiao-Sen & Wang, Yi & Chen, Zhao-Yang, 2022. "Formation mechanism of heterogeneous hydrate-bearing sediments," Applied Energy, Elsevier, vol. 326(C).
    16. Kawai, Masahito & Obara, Shin'ya, 2021. "Study on a carbon dioxide hydrate power generation system employing an unstirred reactor with cyclopentane," Energy, Elsevier, vol. 230(C).
    17. Aminnaji, Morteza & Qureshi, M Fahed & Dashti, Hossein & Hase, Alfred & Mosalanejad, Abdolali & Jahanbakhsh, Amir & Babaei, Masoud & Amiri, Amirpiran & Maroto-Valer, Mercedes, 2024. "CO2 gas hydrate for carbon capture and storage applications – Part 2," Energy, Elsevier, vol. 300(C).
    18. Jyoti Shanker Pandey & Yousef Jouljamal Daas & Adam Paul Karcz & Nicolas von Solms, 2020. "Enhanced Hydrate-Based Geological CO 2 Capture and Sequestration as a Mitigation Strategy to Address Climate Change," Energies, MDPI, vol. 13(21), pages 1-28, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ge, Yang & Wang, Lei & Song, Yongchen, 2024. "Large-scale experimental study on marine hydrate-based CO2 sequestration," Energy, Elsevier, vol. 312(C).
    2. Xia, Yongqiang & Yu, Tao & Yang, Lei & Chen, Bingbing & Jiang, Lanlan & Yang, Mingjun & Song, Yongchen, 2025. "Multi-state CO2 distribution patterns for subsea carbon sequestration assisted by large-scale CO2 hydrate caps," Energy, Elsevier, vol. 320(C).
    3. Dhamu, Vikas & Xiao, Mengqi & Qureshi, M Fahed & Linga, Praveen, 2024. "Deciphering the CO2 hydrates formation dynamics in brine-saturated oceanic sediments using experimental and machine learning modelling approach," Energy, Elsevier, vol. 313(C).
    4. Wu, Mingyu & Sun, Huiru & Liu, Qingbin & Lv, Xin & Chen, Bingbing & Yang, Mingjun & Song, Yongchen, 2025. "Enhancing CO2 sequestration safety with hydrate caps: A comparative study of CO2 injection modes and saturation effects," Energy, Elsevier, vol. 320(C).
    5. Yang, Mingjun & Dong, Shuang & Zhao, Jie & Zheng, Jia-nan & Liu, Zheyuan & Song, Yongchen, 2021. "Ice behaviors and heat transfer characteristics during the isothermal production process of methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 232(C).
    6. Park, Joon Ho & Park, Jungjoon & Lee, Jae Won & Kang, Yong Tae, 2023. "Progress in CO2 hydrate formation and feasibility analysis for cold thermal energy harvesting application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    7. Wang, Xiao & Pan, Lin & Lau, Hon Chung & Zhang, Ming & Li, Longlong & Zhou, Qiao, 2018. "Reservoir volume of gas hydrate stability zones in permafrost regions of China," Applied Energy, Elsevier, vol. 225(C), pages 486-500.
    8. Fangtian Wang & Bin Zhao & Gang Li, 2018. "Prevention of Potential Hazards Associated with Marine Gas Hydrate Exploitation: A Review," Energies, MDPI, vol. 11(9), pages 1-19, September.
    9. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2017. "Experimental investigation of optimization of well spacing for gas recovery from methane hydrate reservoir in sandy sediment by heat stimulation," Applied Energy, Elsevier, vol. 207(C), pages 562-572.
    10. Chen, Bingbing & Sun, Huiru & Zhou, Hang & Yang, Mingjun & Wang, Dayong, 2019. "Effects of pressure and sea water flow on natural gas hydrate production characteristics in marine sediment," Applied Energy, Elsevier, vol. 238(C), pages 274-283.
    11. Beatrice Castellani, 2023. "Potential Pathway for Reliable Long-Term CO 2 Storage as Clathrate Hydrates in Marine Environments," Energies, MDPI, vol. 16(6), pages 1-13, March.
    12. Zhang, Hao & Nian, Tingkai & Song, Xiaolong & Sun, Xiang & Della Vecchia, Gabriele, 2025. "Effect of wellhead depressurization on the stability of submarine hydrate-bearing reservoir using THMC coupling," Energy, Elsevier, vol. 320(C).
    13. Ma, Shihui & Zheng, Jia-nan & Tang, Dawei & Lv, Xin & Li, Qingping & Yang, Mingjun, 2019. "Experimental investigation on the decomposition characteristics of natural gas hydrates in South China Sea sediments by a micro-differential scanning calorimeter," Applied Energy, Elsevier, vol. 254(C).
    14. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2016. "Experimental and modeling analyses of scaling criteria for methane hydrate dissociation in sediment by depressurization," Applied Energy, Elsevier, vol. 181(C), pages 299-309.
    15. Liu, Qingbin & Li, Shaohua & Jiang, Lanlan & Yang, Mingjun & Yu, Tao & Song, Yongchen, 2025. "Behaviors of methane hydrate formation and growth with halo," Applied Energy, Elsevier, vol. 381(C).
    16. Jyoti Shanker Pandey & Saad Khan & Nicolas von Solms, 2022. "Screening of Low-Dosage Methanol as a Hydrate Promoter," Energies, MDPI, vol. 15(18), pages 1-20, September.
    17. Sadeh, Elaheh & Farhadian, Abdolreza & Varfolomeev, Mikhail A. & Semenov, Matvei E. & Mohammadi, Abolfazl & Mirzakimov, Ulukbek Zh & Chirkova, Yulia F., 2025. "Rapid production of high-density methane hydrate pellets using double chain surfactants: Implications for solidified methane storage," Energy, Elsevier, vol. 318(C).
    18. Zhu, Yi-Jian & Chu, Yan-Song & Huang, Xing & Wang, Ling-Ban & Wang, Xiao-Hui & Xiao, Peng & Sun, Yi-Fei & Pang, Wei-Xin & Li, Qing-Ping & Sun, Chang-Yu & Chen, Guang-Jin, 2023. "Stability of hydrate-bearing sediment during methane hydrate production by depressurization or intermittent CO2/N2 injection," Energy, Elsevier, vol. 269(C).
    19. Zhao, Ermeng & Hou, Jian & Liu, Yongge & Ji, Yunkai & Liu, Wenbin & Lu, Nu & Bai, Yajie, 2020. "Enhanced gas production by forming artificial impermeable barriers from unconfined hydrate deposits in Shenhu area of South China sea," Energy, Elsevier, vol. 213(C).
    20. Sai Bhargav Annavajjala & Noah Van Dam & Devinder Mahajan & Jan Kosny, 2025. "A Review of CO 2 Clathrate Hydrate Technology: From Lab-Scale Preparation to Cold Thermal Energy Storage Solutions," Energies, MDPI, vol. 18(10), pages 1-51, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:327:y:2025:i:c:s0360544225020365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.