IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v10y2020i4p783-794.html
   My bibliography  Save this article

Doping amino acids with classical gas hydrate inhibitors to facilitate the hydrate inhibition effect at low dosages

Author

Listed:
  • M Fahed Qureshi
  • Majeda Khraisheh
  • Fares Almomani

Abstract

The formation of gas hydrates in offshore subsea lines is a major flow assurance concern for the oil and gas industry. In this work, the thermodynamic hydrate inhibition (THI) effect of doping amino acids (AA) such as glycine (Gly), l‐alanine (Ala), and histidine (His) with classical gas hydrate inhibitors (CHI) such as methanol (Me), ethylene glycol (EG), and sodium chloride (NaCl) have been examined at diverse operating conditions. The experimental tests were carried out using rocking cell assembly [RC‐5] on pure methane gas at different pressure conditions (40–120 bars) using an equal ratio mixture (1:1) of AA and CHI at a low dosage (2 wt%). The computational three‐dimensional molecular models of AA and CHI were generated to examine electric charge distribution within these molecules and cognize the interaction mechanism between methane hydrates and AA. The experimental results indicate that Me and EG can synergize the THI effect of AA at a low dosage of 1 wt%. The AA doped with Me tend to provide better THI effect compared to AA doped with EG and NaCl. The experimental results also show that the doped AA Ala mixtures provide THI effect similar to pure CHI such as Me, EG, and NaCl at low dosage (2 wt%). © 2020 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • M Fahed Qureshi & Majeda Khraisheh & Fares Almomani, 2020. "Doping amino acids with classical gas hydrate inhibitors to facilitate the hydrate inhibition effect at low dosages," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 783-794, August.
  • Handle: RePEc:wly:greenh:v:10:y:2020:i:4:p:783-794
    DOI: 10.1002/ghg.1990
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.1990
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.1990?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    2. Lee, Dongyoung & Go, Woojin & Seo, Yongwon, 2019. "Experimental and computational investigation of methane hydrate inhibition in the presence of amino acids and ionic liquids," Energy, Elsevier, vol. 182(C), pages 632-640.
    3. Zhang, Jianbo & Wang, Zhiyuan & Liu, Shun & Zhang, Weiguo & Yu, Jing & Sun, Baojiang, 2019. "Prediction of hydrate deposition in pipelines to improve gas transportation efficiency and safety," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qureshi, M Fahed & Khandelwal, Himanshu & Usadi, Adam & Barckholtz, Timothy A. & Mhadeshwar, Ashish B. & Linga, Praveen, 2022. "CO2 hydrate stability in oceanic sediments under brine conditions," Energy, Elsevier, vol. 256(C).
    2. Jyoti Shanker Pandey & Saad Khan & Nicolas von Solms, 2022. "Screening of Low-Dosage Methanol as a Hydrate Promoter," Energies, MDPI, vol. 15(18), pages 1-20, September.
    3. Jyoti Shanker Pandey & Saad Khan & Nicolas von Solms, 2021. "Chemically Influenced Self-Preservation Kinetics of CH 4 Hydrates below the Sub-Zero Temperature," Energies, MDPI, vol. 14(20), pages 1-28, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng Li & Christine C. Holzammer & Andreas S. Braeuer, 2020. "Analysis of the Dissolution of CH 4 /CO 2 -Mixtures into Liquid Water and the Subsequent Hydrate Formation via In Situ Raman Spectroscopy," Energies, MDPI, vol. 13(4), pages 1-17, February.
    2. Zhao, Ermeng & Hou, Jian & Ji, Yunkai & Liu, Yongge & Bai, Yajie, 2021. "Enhancing gas production from Class II hydrate deposits through depressurization combined with low-frequency electric heating under dual horizontal wells," Energy, Elsevier, vol. 233(C).
    3. Jia, Wenlong & Yang, Fan & Li, Changjun & Huang, Ting & Song, Shuoshuo, 2021. "A unified thermodynamic framework to compute the hydrate formation conditions of acidic gas/water/alcohol/electrolyte mixtures up to 186.2 MPa," Energy, Elsevier, vol. 230(C).
    4. Shi, Lingli & He, Yong & Lu, Jingsheng & Liang, Deqing, 2020. "Effect of dodecyl dimethyl benzyl ammonium chloride on CH4 hydrate growth and agglomeration in oil-water systems," Energy, Elsevier, vol. 212(C).
    5. Go, Woojin & Yun, Soyeong & Lee, Dongyoung & Seo, Yongwon, 2022. "Experimental and computational investigation of hydrophilic monomeric substances as novel CO2 hydrate inhibitors and potential synergists," Energy, Elsevier, vol. 244(PB).
    6. Li, Zhi & Zhang, Yue & Shen, Yimao & Cheng, Liwei & Liu, Bei & Yan, Kele & Chen, Guangjin & Li, Tianduo, 2022. "Molecular dynamics simulation to explore the synergistic inhibition effect of kinetic and thermodynamic hydrate inhibitors," Energy, Elsevier, vol. 238(PB).
    7. Salma Elhenawy & Majeda Khraisheh & Fares Almomani & Mohammad A. Al-Ghouti & Mohammad K. Hassan & Ala’a Al-Muhtaseb, 2022. "Towards Gas Hydrate-Free Pipelines: A Comprehensive Review of Gas Hydrate Inhibition Techniques," Energies, MDPI, vol. 15(22), pages 1-44, November.
    8. Chen, Siyuan & Wang, Yanhong & Lang, Xuemei & Fan, Shuanshi & Li, Gang, 2023. "Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure," Energy, Elsevier, vol. 268(C).
    9. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
    10. Liao, Bo & Wang, Jintang & Li, Mei-Chun & Lv, Kaihe & Wang, Qi & Li, Jian & Huang, Xianbing & Wang, Ren & Lv, Xindi & Chen, Zhangxin & Sun, Jinsheng, 2023. "Microscopic molecular and experimental insights into multi-stage inhibition mechanisms of alkylated hydrate inhibitor," Energy, Elsevier, vol. 279(C).
    11. Choi, Wonjung & Lee, Yohan & Mok, Junghoon & Seo, Yongwon, 2020. "Influence of feed gas composition on structural transformation and guest exchange behaviors in sH hydrate – Flue gas replacement for energy recovery and CO2 sequestration," Energy, Elsevier, vol. 207(C).
    12. Luís Bernardes & Júlio Carneiro & Pedro Madureira & Filipe Brandão & Cristina Roque, 2015. "Determination of Priority Study Areas for Coupling CO2 Storage and CH 4 Gas Hydrates Recovery in the Portuguese Offshore Area," Energies, MDPI, vol. 8(9), pages 1-17, September.
    13. Nicola Varini & Niall J. English & Christian R. Trott, 2012. "Molecular Dynamics Simulations of Clathrate Hydrates on Specialised Hardware Platforms," Energies, MDPI, vol. 5(9), pages 1-8, September.
    14. Cheng, Fanbao & Sun, Xiang & Li, Yanghui & Ju, Xin & Yang, Yaobin & Liu, Xuanji & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2023. "Numerical analysis of coupled thermal-hydro-chemo-mechanical (THCM) behavior to joint production of marine gas hydrate and shallow gas," Energy, Elsevier, vol. 281(C).
    15. Zhong, Jin-Rong & Sun, Yi-Fei & Li, Wen-Zhi & Xie, Yan & Chen, Guang-Jin & Sun, Chang-Yu & Yang, Lan-Ying & Qin, Hui-Bo & Pang, Wei-Xin & Li, Qing-Ping, 2019. "Structural transition range of methane-ethane gas hydrates during decomposition below ice point," Applied Energy, Elsevier, vol. 250(C), pages 873-881.
    16. Han Xue & Linhai Li & Yiqun Wang & Youhua Lu & Kai Cui & Zhiyuan He & Guoying Bai & Jie Liu & Xin Zhou & Jianjun Wang, 2024. "Probing the critical nucleus size in tetrahydrofuran clathrate hydrate formation using surface-anchored nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Li, Gang, 2016. "Large scale experimental evaluation to methane hydrate dissociation below quadruple point in sandy sediment," Applied Energy, Elsevier, vol. 162(C), pages 372-381.
    18. Yi Wang & Chun-Gang Xu & Xiao-Sen Li & Gang Li & Zhao-Yang Chen, 2013. "Similarity Analysis in Scaling a Gas Hydrates Reservoir," Energies, MDPI, vol. 6(5), pages 1-13, May.
    19. Liu, Jinxiang & Hou, Jian & Xu, Jiafang & Liu, Haiying & Chen, Gang & Zhang, Jun, 2017. "Formation of clathrate cages of sI methane hydrate revealed by ab initio study," Energy, Elsevier, vol. 120(C), pages 698-704.
    20. Xingbo Li & Yu Liu & Hanquan Zhang & Bo Xiao & Xin Lv & Haiyuan Yao & Weixin Pang & Qingping Li & Lei Yang & Yongchen Song & Jiafei Zhao, 2019. "Non-Embedded Ultrasonic Detection for Pressure Cores of Natural Methane Hydrate-Bearing Sediments," Energies, MDPI, vol. 12(10), pages 1-14, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:10:y:2020:i:4:p:783-794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.