IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v305y2024ics0360544224019698.html
   My bibliography  Save this article

Degradation performance rapid prediction and multi-objective operation optimization of gas turbine blades

Author

Listed:
  • Shi, Dongbo
  • Liao, Guangqing
  • Meng, Yue
  • Zhang, Di
  • Xie, Yonghui

Abstract

The performance degradation of high-temperature blades will affect the safety and efficiency of operation. In response to issues such as ignoring strength characteristics, slow degradation performance prediction, insufficient applicability and accuracy of traditional proxy models, and long operation optimization cycle, a degradation performance prediction model of turbine blades based on the back propagation neural network is established in this research. Furthermore, the efficiency-stress multi-objective operation optimization method based on genetic algorithm is proposed. The results show that the R-square value of the degradation performance neural network prediction model is greater than 0.9 for predicting characteristic parameters. The prediction speed is improved by 104 orders of magnitude compared to the traditional computational fluid dynamics method. The influence mechanisms of turbine outlet flow rate, cooling gas inlet total temperature, and cooling gas flow rate on the degradation performance are revealed. Under fouling extreme conditions and corrosion/wear extreme conditions, the operating parameters of turbine blades are optimized. The maximum values of the efficiency improvement, power increase and maximum von Mises stress reduction are 0.74 %, 2.13 MW and 43 MPa, respectively. This study can provide an effective and novel method for real-time degradation performance prediction and rapid operating condition optimization of turbine blades.

Suggested Citation

  • Shi, Dongbo & Liao, Guangqing & Meng, Yue & Zhang, Di & Xie, Yonghui, 2024. "Degradation performance rapid prediction and multi-objective operation optimization of gas turbine blades," Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224019698
    DOI: 10.1016/j.energy.2024.132195
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224019698
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132195?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Yu-Zhi & Zhao, Xu-Dong & Xiang, Heng-Chao & Tsoutsanis, Elias, 2021. "A sequential model-based approach for gas turbine performance diagnostics," Energy, Elsevier, vol. 220(C).
    2. Cheng, Xianda & Zheng, Haoran & Yang, Qian & Zheng, Peiying & Dong, Wei, 2023. "Surrogate model-based real-time gas path fault diagnosis for gas turbines under transient conditions," Energy, Elsevier, vol. 278(PA).
    3. Wang, Yuqi & Liu, Tianyuan & Meng, Yue & Zhang, Di & Xie, Yonghui, 2022. "Integrated optimization for design and operation of turbomachinery in a solar-based Brayton cycle based on deep learning techniques," Energy, Elsevier, vol. 252(C).
    4. Kayadelen, Hasan Kayhan & Ust, Yasin & Bashan, Veysi, 2021. "Thermodynamic performance analysis of state of the art gas turbine cycles with inter-stage turbine reheat and steam injection," Energy, Elsevier, vol. 222(C).
    5. Liu, Zuming & Karimi, Iftekhar A., 2020. "Gas turbine performance prediction via machine learning," Energy, Elsevier, vol. 192(C).
    6. Ram, Krishnil R. & Lal, Sunil P. & Ahmed, M. Rafiuddin, 2019. "Design and optimization of airfoils and a 20 kW wind turbine using multi-objective genetic algorithm and HARP_Opt code," Renewable Energy, Elsevier, vol. 144(C), pages 56-67.
    7. Yonezawa, Koichi & Nakai, Genki & Takayasu, Masahiro & Sugiyama, Kazuyasu & Sugita, Katsuhiko & Umezawa, Shuichi & Ohmori, Shuichi, 2021. "Influence of blade corrosion on aerodynamic characteristics of a gas turbine," Energy, Elsevier, vol. 230(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Bosheng & Cao, Li'ang & Xie, Daxing & Chen, Jinwei & Zhang, Huisheng, 2025. "Fault diagnosis of gas turbine based on feature fusion cascade neural network," Energy, Elsevier, vol. 321(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Qiuwan & Li, Yunzhu & Yang, Like & Liu, Tianyuan & Zhang, Di & Xie, Yonghui, 2022. "Performance prediction and design optimization of turbine blade profile with deep learning method," Energy, Elsevier, vol. 254(PA).
    2. Yu, Bosheng & Cao, Li'ang & Xie, Daxing & Chen, Jinwei & Zhang, Huisheng, 2025. "Fault diagnosis of gas turbine based on feature fusion cascade neural network," Energy, Elsevier, vol. 321(C).
    3. Jiang, Chiju & Zhang, Weihao & Li, Ya & Li, Lele & Wang, Yufan & Huang, Dongming, 2023. "Multi-scale Pix2Pix network for high-fidelity prediction of adiabatic cooling effectiveness in turbine cascade," Energy, Elsevier, vol. 265(C).
    4. Park, Yeseul & Choi, Minsung & Choi, Gyungmin, 2022. "Fault detection of industrial large-scale gas turbine for fuel distribution characteristics in start-up procedure using artificial neural network method," Energy, Elsevier, vol. 251(C).
    5. Wei, Zhiyuan & Zhang, Shuguang & Ding, Shuiting, 2024. "Fast uncertainty assessment of in-service thrust control for turbofan engines: An equivalent model using Taylor expansion," Energy, Elsevier, vol. 308(C).
    6. Mauro, S. & Lanzafame, R. & Messina, M. & Brusca, S., 2023. "On the importance of the root-to-hub adapter effects on HAWT performance: A CFD-BEM numerical investigation," Energy, Elsevier, vol. 275(C).
    7. Mingliang Bai & Jinfu Liu & Yujia Ma & Xinyu Zhao & Zhenhua Long & Daren Yu, 2020. "Long Short-Term Memory Network-Based Normal Pattern Group for Fault Detection of Three-Shaft Marine Gas Turbine," Energies, MDPI, vol. 14(1), pages 1-22, December.
    8. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Syed Muhammad Arafat & Sher Afghan & Ahmad Hassan Kamal & Muhammad Asim & Muhammad Haider Khan & Muhammad Waqas Rafique & Uwe Naumann & Sajawal Gul Niazi &, 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency," Energies, MDPI, vol. 13(21), pages 1-33, October.
    9. Li, Jinxing & Liu, Tianyuan & Zhu, Guangya & Li, Yunzhu & Xie, Yonghui, 2023. "Uncertainty quantification and aerodynamic robust optimization of turbomachinery based on graph learning methods," Energy, Elsevier, vol. 273(C).
    10. Li, Yunzhu & Liu, Tianyuan & Wang, Yuqi & Xie, Yonghui, 2022. "Deep learning based real-time energy extraction system modeling for flapping foil," Energy, Elsevier, vol. 246(C).
    11. Cheng, Xianda & Zheng, Haoran & Yang, Qian & Zheng, Peiying & Dong, Wei, 2023. "Surrogate model-based real-time gas path fault diagnosis for gas turbines under transient conditions," Energy, Elsevier, vol. 278(PA).
    12. Lei, Jianhong & Li, Jing & Wu, Shaohua & Li, Haoxing & Amaratunga, Gehan A.J. & Han, Xu & Yang, Wenming, 2024. "An advanced high dimensional model representation approach for internal combustion engine modeling and optimization," Energy, Elsevier, vol. 311(C).
    13. Masood, Zahid & Khan, Shahroz & Qian, Li, 2021. "Machine learning-based surrogate model for accelerating simulation-driven optimisation of hydropower Kaplan turbine," Renewable Energy, Elsevier, vol. 173(C), pages 827-848.
    14. Long, Zhenhua & Bai, Mingliang & Ren, Minghao & Liu, Jinfu & Yu, Daren, 2023. "Fault detection and isolation of aeroengine combustion chamber based on unscented Kalman filter method fusing artificial neural network," Energy, Elsevier, vol. 272(C).
    15. Gong, Wenbin & Lei, Zhao & Nie, Shunpeng & Liu, Gaowen & Lin, Aqiang & Feng, Qing & Wang, Zhiwu, 2023. "A novel combined model for energy consumption performance prediction in the secondary air system of gas turbine engines based on flow resistance network," Energy, Elsevier, vol. 280(C).
    16. Chen, Yu-Zhi & Zhang, Wei-Gang & Tsoutsanis, Elias & Zhao, Junjie & Tam, Ivan C.K. & Gou, Lin-Feng, 2025. "An advanced performance-based method for soft and abrupt fault diagnosis of industrial gas turbines," Energy, Elsevier, vol. 321(C).
    17. Muhammad Baqir Hashmi & Mohammad Mansouri & Amare Desalegn Fentaye & Shazaib Ahsan & Konstantinos Kyprianidis, 2024. "An Artificial Neural Network-Based Fault Diagnostics Approach for Hydrogen-Fueled Micro Gas Turbines," Energies, MDPI, vol. 17(3), pages 1-23, February.
    18. Al-Sanad, Shaikha & Wang, Lin & Parol, Jafarali & Kolios, Athanasios, 2021. "Reliability-based design optimisation framework for wind turbine towers," Renewable Energy, Elsevier, vol. 167(C), pages 942-953.
    19. Martí de Castro-Cros & Manel Velasco & Cecilio Angulo, 2021. "Machine-Learning-Based Condition Assessment of Gas Turbines—A Review," Energies, MDPI, vol. 14(24), pages 1-27, December.
    20. Li, Xiaoya & Chen, Xiaoting & Que, Wenshuai, 2025. "A review on machine learning techniques in thermodynamic cycle system design and control for energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 218(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224019698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.