IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v295y2024ics0360544224007953.html
   My bibliography  Save this article

Experimental research on condensation flow and heat transfer characteristics of immiscible binary mixed vapors on different wettability wall surfaces

Author

Listed:
  • Zhang, Weilong
  • Cheng, Min
  • Zhu, Xun
  • Ding, Yudong
  • Liao, Qiang

Abstract

In the process of biomass gasification syngas waste heat recovery, water and organic compounds in the syngas will condense at the same time, resulting in immiscible condensates adhering to the wall, which can reduce the heat exchanger heat transfer efficiency and working life. Changing the wettability of the wall surface can affect the condensate flow state on the wall surface, thus affecting the condensation heat transfer performance. Water and organic cyclohexane were used as immiscible working fluids in this paper, the condensation flow and heat transfer characteristics of the mixed vapors on hydrophilic, super-hydrophilic, and super-hydrophobic wall surfaces were experimentally investigated. The results showed that cyclohexane in immiscible condensates existed as a liquid film on hydrophilic, super-hydrophilic, and super-hydrophobic wall surfaces, while the water existed in droplets on the hydrophilic and super-hydrophobic wall surfaces, and there were two forms of channels and droplets on the super-hydrophilic wall surface. The condensation heat transfer coefficient on the super-hydrophobic wall surface was higher than that on the hydrophilic wall surface and the super-hydrophilic wall surface, with a maximum of 34% higher than hydrophilic and 45% higher than super-hydrophilic, which was related to the smaller droplet departure diameter on the super-hydrophobic surface. In addition, the super-hydrophilic wall surface had better heat transfer performance than the hydrophilic wall surface only when the immiscible condensate was a "film-channel" flow pattern. The results can provide guidance for enhancing the condensation heat transfer of the water and organic compounds binary mixed vapors.

Suggested Citation

  • Zhang, Weilong & Cheng, Min & Zhu, Xun & Ding, Yudong & Liao, Qiang, 2024. "Experimental research on condensation flow and heat transfer characteristics of immiscible binary mixed vapors on different wettability wall surfaces," Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224007953
    DOI: 10.1016/j.energy.2024.131023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224007953
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224007953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.