IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics0360544224004328.html
   My bibliography  Save this article

An experimental comparative study of the effects on the engine performance of using three different motion mechanisms in a beta-configuration Stirling engine

Author

Listed:
  • Erol, Derviş

Abstract

This study deals with three different Stirling engines with rhombic, slider-crank, and bell-crank motion mechanisms which have been designed and manufactured. Engine performance tests of Stirling engines with these three different motion mechanisms at different operating parameters have been carried out in a laboratory environment. During the experimental studies under consideration, the cooler and heater temperatures have been kept at 300 K (±5) and 1000 K (±10), respectively. Engine performance tests have been performed at different charging pressures using helium, nitrogen, and air as working fluids. Despite the fact that the Stirling engines with these three different motion mechanisms have the same sweeping volumes and technical specifications, engine performance values have been obtained differently from each other. The main reason for this difference can be explained as friction and other mechanical losses in motion mechanisms. The performance values obtained depending on the type of motion mechanism are rhombic, slider-crank, and bell-crank, from highest to lowest, respectively. The highest engine power measured among all experimental studies has been 215.48 W at 550 rpm and 4 bar charging pressure in tests using helium gas and rhombic motion mechanism. The lowest engine power among the maximum power values has been obtained as 82.5 W at 167 rpm and 4 bar charging pressure in experiments using air as the working fluid and the bell-crank motion mechanism. As a matter of fact, the highest engine power within the maximum engine power values is 161.2% higher than the lowest engine power.

Suggested Citation

  • Erol, Derviş, 2024. "An experimental comparative study of the effects on the engine performance of using three different motion mechanisms in a beta-configuration Stirling engine," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004328
    DOI: 10.1016/j.energy.2024.130660
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224004328
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130660?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.