IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224000896.html
   My bibliography  Save this article

Decision support system for ship energy efficiency management based on an optimization model

Author

Listed:
  • Karatuğ, Çağlar
  • Tadros, Mina
  • Ventura, Manuel
  • Soares, C. Guedes

Abstract

This paper introduces an innovative decision support system for improving ship energy efficiency. It combines an engine optimization model and an artificial neural network (ANN). Real-time data regarding the ship and engine performance is obtained along a specific ship navigation, and an engine optimization model is built using Ricardo Wave software. This model is validated with high accuracy. Ship-specific parameters are derived, and fuel consumption is estimated using ANN models with different structures. The study identifies the most suitable ANN model with 1 hidden layer and 5 neurons based on error metric evaluation where the 0.99697 R2, 0.00035 RMSE, and 0.06470 MAPE scores are calculated. This approach offers a cost-effective solution for shipping companies to monitor critical engine parameters in real-time without investing in sensors or data collection systems. Thus, it contributes to dealing with the problem of the scarcity of analyzable data in the maritime literature, which is one of the significant issues in the papers related to energy efficiency, machine learning, and deep learning. It is an innovative approach since the parameters that are related to real-time operations rather than considering only instruction book information are aggregated, and the produced data is analyzed by an intelligent tool.

Suggested Citation

  • Karatuğ, Çağlar & Tadros, Mina & Ventura, Manuel & Soares, C. Guedes, 2024. "Decision support system for ship energy efficiency management based on an optimization model," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224000896
    DOI: 10.1016/j.energy.2024.130318
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224000896
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130318?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224000896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.